
Using Your Sybex Electronic Book
To realize the full potential of this Sybex electronic book, you must have Adobe Acrobat Reader with

Search installed on your computer. To find out if you have the correct version of Acrobat Reader, click on
the Edit menu—Search should be an option within this menu file. If Search is not an option in the Edit
menu, please exit this application and install Adobe Acrobat Reader with Search from this CD (double-
click rp500enu.exe in the Adobe folder).

Navigation

To search, click the Search Query button on the toolbar
or choose Edit >Search > Query to open the Search window. In
the Adobe Acrobat Search dialog’s text field, type the text you
want to find and click Search.

Use the Search Next button (Control+U) and Search
Previous button (Control+Y) to go to other matches in
the book. The Search command also has powerful tools for
limiting and expanding the definition of the term you are
searching for. Refer to Acrobat's online Help (Help > Plug-In
Help > Using Acrobat Search) for more information.

www.sybex.com

Click here to begin using
your Sybex Elect ronic Book!

Search

Navigate through the book by clicking on the headings that appear in the left panel;
the corresponding page from the book displays in the right panel.

San Francisco • London

Java

™

2:

Web Developer Certification

Study Guide

Natalie Levi
with Philip Heller

http://www.sybex.com

Associate Publisher: Richard Mills, Neil Edde
Acquisitions Editor: Denise Santoro Lincoln
Developmental Editor: Elizabeth Hurley
Editor: Sharon Wilkey
Production Editors: Leslie H. Light, Erica Yee
Technical Editor: Steven Potts
Book Designer: Bill Gibson
Graphic Illustrator: Tony Jonick, Rapid Rabbit
Electronic Publishing Specialists: Stacey Loomis, Rozi Harris, Interactive Composition Corporation
Proofreaders: Amey Garber, Dave Nash, Laurie O’Connell, Yariv Rabinovitch, Nancy Riddiough
Indexer: Lynnzee Elze
CD Coordinator: Dan Mummert
CD Technician: Kevin Ly
Cover Designer: Archer Design
Cover Illustrator/Photographer: Natural Selection

Copyright © 2002 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this
publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photo-
copy, photograph, magnetic, or other record, without the prior agreement and written permission of the publisher.

Library of Congress Card Number: 2002102010

ISBN: 0-7821-4091-2

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United States and/or other
countries.

Screen reproductions produced with FullShot 99. FullShot 99 © 1991–1999 Inbit Incorporated. All rights reserved.

FullShot is a trademark of Inbit Incorporated.

The CD interface was created using Macromedia Director, COPYRIGHT 1994, 1997–1999 Macromedia Inc. For more
information on Macromedia and Macromedia Director, visit http://www.macromedia.com.

Netscape Communications, the Netscape Communications logo, Netscape, and Netscape Navigator are trademarks
of Netscape Communications Corporation.

Netscape Communications Corporation has not authorized, sponsored, endorsed, or approved this publication and is not
responsible for its content. Netscape and the Netscape Communications Corporate Logos are trademarks and trade names
of Netscape Communications Corporation. All other product names and/or logos are trademarks of their respective owners.

SYBEX is an independent entity from Sun Microsystems, Inc., and not affiliated with Sun Microsystems, Inc. in any manner.
This publication may be used in assisting students to prepare for a Sun Certified Web Component Developer for J2EE Plat-
form exam. Neither Sun Microsystems, its designated review company, nor SYBEX warrants that use of this publication will
ensure passing the relevant exam. Sun is either a registered trademark or trademark of Sun Microsystems, Inc. in the United
States and/or other countries.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive terms
by following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release soft-
ware whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by software manu-
facturer(s). The author and the publisher make no representation or warranties of any kind with regard to the completeness
or accuracy of the contents herein and accept no liability of any kind including but not limited to performance, merchant-
ability, fitness for any particular purpose, or any losses or damages of any kind caused or alleged to be caused directly or
indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.sybex.com

To our valued readers,

The success of Sun’s Java certification program has surpassed all expectations; it is now widely
recognized as the hottest programmer certification. Java is now a first-class citizen in the world of
programming languages and increasing use of the Java 2 Platform for enterprise-class applications
has fueled demand for the related certifications.

The Sun Certified Web Component Developer for Java 2 Platform exam is relatively new but is aimed
at the part of the Java market that is growing the fastest. Java 2 Enterprise Edition technologies, such
as JSP and Servlets, are used in corporate web applications of all kinds. Sybex is proud to have helped
thousands of candidates already prepare for the Programmer and Developer certifications with the
best-selling

Complete Java Certification Study Guide

. These exams are a prerequisite for the Web
Component Developer exam, and in the new Study Guide, author Natalie Levi gives candidates
exactly what they need to pass the first time.

The authors and editors have worked hard to ensure that the book you hold in your hands is compre-
hensive, in-depth, and pedagogically sound. We’re confident that

Java 2 Web Developer Certification
Study Guide

 will exceed the demanding standards of the certification marketplace and help you suc-
ceed in your endeavors.

As always, your feedback is important to us. Please send comments, questions, or suggestions to
support@sybex.com. At Sybex we’re continually striving to meet the needs of individuals preparing
for IT certification exams.

Good luck in pursuit of your Java certification!

Richard Mills
Associate Publisher—Programming
Sybex Inc.

http://www.sybex.com

Software License Agreement: Terms and Conditions

The media and/or any online materials accompanying this
book that are available now or in the future contain pro-
grams and/or text files (the “Software”) to be used in connec-
tion with the book. SYBEX hereby grants to you a license to
use the Software, subject to the terms that follow. Your pur-
chase, acceptance, or use of the Software will constitute your
acceptance of such terms.

The Software compilation is the property of SYBEX unless
otherwise indicated and is protected by copyright to SYBEX
or other copyright owner(s) as indicated in the media files
(the “Owner(s)”). You are hereby granted a single-user
license to use the Software for your personal, noncommercial
use only. You may not reproduce, sell, distribute, publish,
circulate, or commercially exploit the Software, or any por-
tion thereof, without the written consent of SYBEX and the
specific copyright owner(s) of any component software
included on this media.

In the event that the Software or components include specific
license requirements or end-user agreements, statements of
condition, disclaimers, limitations or warranties (“End-User
License”), those End-User Licenses supersede the terms and
conditions herein as to that particular Software component.
Your purchase, acceptance, or use of the Software will con-
stitute your acceptance of such End-User Licenses.

By purchase, use, or acceptance of the Software, you further
agree to comply with all export laws and regulations of the
United States as such laws and regulations may exist from
time to time.

Software Support

Components of the supplemental Software and any offers
associated with them may be supported by the specific
Owner(s) of that material, but they are not supported by
SYBEX. Information regarding any available support may be
obtained from the Owner(s) using the information provided in
the appropriate readme files or listed elsewhere on the media.

Should the manufacturer(s) or other Owner(s) cease to offer
support or decline to honor any offer, SYBEX bears no
responsibility. This notice concerning support for the Soft-
ware is provided for your information only. SYBEX is not the
agent or principal of the Owner(s), and SYBEX is in no way
responsible for providing any support for the Software, nor is
it liable or responsible for any support provided, or not pro-
vided, by the Owner(s).

Warranty

SYBEX warrants the enclosed media to be free of physical
defects for a period of ninety (90) days after purchase. The
Software is not available from SYBEX in any other form or

media than that enclosed herein or posted to www.sybex.com.
If you discover a defect in the media during this warranty
period, you may obtain a replacement of identical format at
no charge by sending the defective media, postage prepaid,
with proof of purchase to:

SYBEX Inc.
Product Support Department
1151 Marina Village Parkway
Alameda, CA 94501
Web: http://www.sybex.com

After the 90-day period, you can obtain replacement media of
identical format by sending us the defective disk, proof of pur-
chase, and a check or money order for $10, payable to SYBEX.

Disclaimer

SYBEX makes no warranty or representation, either expressed
or implied, with respect to the Software or its contents, qual-
ity, performance, merchantability, or fitness for a particular
purpose. In no event will SYBEX, its distributors, or dealers be
liable to you or any other party for direct, indirect, special,
incidental, consequential, or other damages arising out of the
use of or inability to use the Software or its contents even if
advised of the possibility of such damage. In the event that the
Software includes an online update feature, SYBEX further
disclaims any obligation to provide this feature for any specific
duration other than the initial posting.

The exclusion of implied warranties is not permitted by some
states. Therefore, the above exclusion may not apply to you.
This warranty provides you with specific legal rights; there
may be other rights that you may have that vary from state to
state. The pricing of the book with the Software by SYBEX
reflects the allocation of risk and limitations on liability con-
tained in this agreement of Terms and Conditions.

Shareware Distribution

This Software may contain various programs that are distrib-
uted as shareware. Copyright laws apply to both shareware and
ordinary commercial software, and the copyright Owner(s)
retains all rights. If you try a shareware program and continue
using it, you are expected to register it. Individual programs
differ on details of trial periods, registration, and payment.
Please observe the requirements stated in appropriate files.

Copy Protection

The Software in whole or in part may or may not be copy-
protected or encrypted. However, in all cases, reselling or
redistributing these files without authorization is expressly
forbidden except as specifically provided for by the Owner(s)
therein.

http://www.sybex.com

For my Dad, Mom, and brother. Thank you for always being there for me and

teaching me the importance of family.

—Natalie

http://www.sybex.com

Acknowledgments

T

here are a group of people who are very dear to me, who seem to
believe in every endeavor I tackle. Thank you Yoav, Ariela, Delon, Sara,
Osher, Scott Learned, Noelle Aardema and family, Steve Stelting, Chris
Cook (Cookie-Monster), Johnnie Antinone, Eleni and Bill Miller, Tressa
(Stressa) Cavigliano, Jonathan Newbrough, Phillip Heller, Simon Roberts,
Justin Schwab, Mike, Victor Peters, other friends, and the SuperC group for
inspiration and support.

I would also like to acknowledge and thank those people who put in the
extra time to help satisfy my desires for perfection. To the editors: Sharon
Wilkey, Steven Potts, Erica Yee, Leslie H. Light, Elizabeth Hurley, Denise
Santoro-Lincoln, and Richard Mills. And to the rest of the talented Sybex
staff who assisted us: Stacey Loomis, Tony Jonick, Dan Mummert, Kevin Ly,
Amey Garber, Dave Nash, Laurie O’Connell, Yariv Rabinovitch, and Nancy
Riddiough.

—Natalie

http://www.sybex.com

Introduction

I

f you are preparing to take the Sun Certified Web Component Devel-
oper for J2EE Platform exam, you will undoubtedly want to find as much
information as you can concerning servlets and Java Server Pages (JSPs). The
more information you have at your disposal and the more hands-on experi-
ence you gain, the better off you will be when attempting to pass the exam.
This study guide was written with that in mind. We have utilized a variety of
valid resources to explicitly define all characteristics associated with the
exam objectives. We attempted to dispense as much information as we could
about servlet and JSP web components so that you will be prepared for the
test—but not so much that you will be overloaded. This book is arranged in
a format that follows the Sun-specified exam objectives. If you need to con-
centrate on a particular objective, you will find everything you need within
the chapter on which the objective is based.

This book presents the technical material at an intermediate level. You
should be experienced with the Java language and have passed the Sun Cer-
tified Programmer for the Java 2 Platform exam. You should also have
some experience with servlets or Java Server Pages. If you do not, it is still
possible to acquire the knowledge necessary to pass the exam by using this
book. You will, however, need to study each chapter thoroughly and write
practice code to ensure you thoroughly understand each concept. Although
some of the objectives have one-word answers, keep in mind that the exam
might ask any question surrounding the information related to the topic.
The book is written in a way that discusses all topics that are relevant to a
specific objective.

Several practice exams are provided to test your knowledge level as you
study. If you can answer 80 percent or more of the review questions correctly
for a given chapter, you can probably feel safe moving on to the next chapter.
If you’re unable to answer that many correctly, reread the chapter and try the
questions again. Your score should improve.

Don’t

 just study the questions and answers—the questions on the actual
exam will be different from the practice ones included in this book and on the
CD. The exam is designed to test your knowledge of a concept or objective, so

use this book to learn the objective

behind

 the question.

http://www.sybex.com

xviii

Why Become a Sun Certified Programmer?

What Is the Sun Certified Web Component
Developer for J2EE

™

 Certification?

B

usinesses are often intrigued and interested in incorporating new tech-
nologies to improve their existing systems. However, because the technologies
are fairly new, it is difficult for developers to prove their level of competence
in the desired area. A thorough understanding of the rules associated with
web component development can ensure an employer that you can begin
developing these components to provide a successful web solution for their
applications. Those programmers who successfully complete the exam can
be assured that their certification is respected in the computer industry, as it
tests your knowledge on the basic fundamentals and the ability to utilize
these web components in an advanced fashion.

Now that J2EE technologies are accepted in the computer industry as pro-
viding an enterprise-level solution to robust systems, it is critical that Java
programmers understand the key components that drive this architecture to
the web user. With each layer managing distinct tasks, the design offers
expandability, maintainability, and flexibility, to name a few; and servlets
and JSPs are the foundation components used to communicate with the front
end of the application. Becoming a Sun certified web component developer
proves to companies that you not only know of the technologies and their
techniques, but that you are proficient in understanding when and how to
use servlets and JSPs within a J2EE architecture.

Why Become a Sun Certified Programmer?

T

here are a number of reasons for becoming a Sun certified web
component developer:

�

It demonstrates proof of professional achievement.

�

It increases your marketability.

�

It provides greater opportunity for advancement in your field.

�

It is increasingly found as a requirement for some types of advanced
training.

�

It raises customer confidence in you and your company’s services.

Let’s explore each reason in detail.

http://www.sybex.com

Why Become a Sun Certified Programmer?

xix

Provides Proof of Professional Achievement

Specialized certifications are the best way to stand out from the crowd. In
this age of technology certifications, you will find thousands of programmers
who have successfully completed the Sun Certified Programmer for the Java 2
Platform exam. This level of certification proves you understand the funda-
mentals. To set yourself apart from the crowd, you need a little bit more.
With Java finally making an impact on the web user, a developer must prove
that their skill set expands beyond the fundamentals and encompasses web
development.

The Sun Certified Web Component Developer for J2EE Platform exam
is either the second or third level of Java certification. After you pass the
Sun Certified Programmer for Java 2 Platform, you are eligible to either
take the Sun Certified Developer for Java 2 Platform exam or the Sun
Certified Web Component Developer for the J2EE Platform exam. The
standard developer exam consists of a programming assignment, along
with an essay. The web component exam is a multiple choice test to deter-
mine your understanding of servlets and JSPs within a J2EE architecture.
Each level of certification further solidifies your credibility and knowledge
in this competitive programming market. J2EE certification will give you
the recognition you deserve.

Increases Your Marketability

Almost anyone can bluff their way through an interview. After you have cer-
tified on a product such as the Sun Certified Web Component Developer for
the J2EE Platform, you will have the credentials to prove your competency.
And certifications are not something that can be taken from you when you
change jobs. Once certified, you can take that certification with you to any
of the positions you accept.

Provides Opportunity for Advancement

Those individuals who prove themselves as competent and dedicated are the
ones who will most likely be promoted. Becoming certified is a great way to
prove your skill level and shows your employers that you are committed
to improving your skill set. Look around you at those who are certified.
They are probably the ones who receive good pay raises and promotions
when they come up.

http://www.sybex.com

xx

How to Become a Sun Certified Programmer

Fulfills Training Requirements

Many companies have set training requirements for their staff so that they
stay up-to-date on the latest technologies. Having a certification program for
the Java family of products provides developers another certification path to
follow when they have exhausted some of the other industry-standard certi-
fications.

Raises Customer Confidence

As companies discover the J2EE architectural advantage, they will undoubt-
edly require qualified staff to implement this technology. Many companies
outsource the work to consulting firms with experience working with J2EE
web components. Those firms that have certified staff have a definite advan-
tage over other firms that do not.

How to Become a Sun Certified Programmer

E

xams must be taken at an authorized Prometric testing center. To
register for the Sun Certified Web Component Developer exam, you must first
purchase an exam voucher by calling 1-800-422-8020 or visiting the Sun Edu-
cational Services website at

http://suned.sun.com/US/certification
/register/index.html

. Payment of $150 will be requested at the time
you register, giving you one year in which to take the exam. Exams can
be scheduled up to six weeks out or as early as the next day.

When you schedule the exam, you will receive instructions regarding
appointment and cancellation procedures, ID requirements, and informa-
tion about the testing center location. In addition, you will receive a regis-
tration and payment confirmation letter from Prometric.

The exam consists of 60 questions, and you will be given 90 minutes to
complete it. Make sure you use your time wisely. Follow the guidelines later
in this introduction on how to take the exam.

In addition to reading the book, you might consider downloading and reading

the white papers that Sun has provided at their website.

http://www.sybex.com

How to Use This Book and the CD

xxi

Who Should Buy This Book?

I

f you want to acquire a solid foundation in Java web component devel-
opment, and your goal is to prepare for the exam by learning how to use and
manage servlets and JSPs , this book is for you. You’ll find clear explanations
of the concepts you need to grasp and plenty of help to achieve the high level of
professional competency you need in order to succeed in your chosen field.

If you want to become certified as a Java web component developer, this
book is definitely for you. However, if you just want to attempt to pass the
exam without really understanding web components, this study guide is not
for you. It is written for people who want to acquire hands-on skills and
in-depth knowledge of Java web components.

How to Use This Book and the CD

W

e’ve included several testing features in both the book and on the
CD-ROM bound at the front of the book. These tools will help you retain
vital exam content as well as prepare to sit for the actual exam. Using our
custom test engine, you can identify weak areas up front and then develop
a solid studying strategy using each of these robust testing features. Our
thorough readme file will walk you through the quick and easy installa-
tion process.

Before You Begin

At the beginning of the book (right after this intro-
duction, in fact) is an assessment test that you can use to check your
readiness for the actual exam. Take this test before you start reading the
book. It will help you determine the areas you may need to brush up on.
The answers appear on a separate page after the last question of the test.
Each answer also includes an explanation and a note telling you in which
chapter this material appears.

Chapter Review Questions

To test your knowledge as you progress
through the book, there are review questions at the end of each chapter.
As you finish each chapter, answer the review questions and then check to
see if your answers are right—the correct answers appear on the page fol-
lowing the last review question. You can go back to reread the section that
covers each question you got wrong to ensure that you get the correct
answer the next time you are tested on the material.

http://www.sybex.com

xxii

Exam Objectives

Electronic “Flashcards”

You’ll also find 150 flashcard questions for
on-the-go review. Download them right onto your Palm device for quick
and convenient reviewing.

Test Engine

In addition to the assessment test and the chapter review
tests, you’ll find two sample exams. Take these practice exams just as if
you were taking the actual exam (i.e., without any reference material).
When you have finished the first exam, move onto the next one to solidify
your test-taking skills. If you get more than 90 percent of the answers
correct, you’re ready to go ahead and take the certification exam.

Full Text of the Book in PDF

Also, if you have to travel but still need to
study for the Java web developer exam and you have a laptop with a CD-
ROM drive, you can carry this entire book with you just by taking along
the CD-ROM. The CD-ROM contains this book in PDF (Adobe Acrobat)
format so it can be easily read on any computer.

Exam Objectives

B

ehind every computer industry exam you are sure to find exam
objectives—the broad topics on which the exam developers want to ensure
your competency. The official Sun Certified Web Component Developer for
J2EE Platform exam objectives are listed here.

Exam objectives are subject to change at any time without prior notice and
at Sun’s sole discretion. Please visit Sun’s website (

http://suned.sun.com

/US/certification/java/index.html

) for the most current listing of exam

objectives.

Java

TM

 Technology Exam Objectives for the Sun Certified

Web Component Developer for J2EE Platform

*The certification consists of one exam and requires Sun Certified Program-
mer for Java 2 Platform status.

1.

Exam Available at: Authorized Prometric testing centers

2.

Prerequisites: Sun Certified Programmer for Java 2 Platform status

http://www.sybex.com

Exam Objectives

xxiii

3.

Exam type: Multiple choice, short answer, and drag-and-drop

4.

Number of questions: 60

5.

Pass score: 61 percent

6.

Time limit: 90 minutes

7.

Cost: US $150

Section 1—The Servlet Model

1.1

For each of the HTTP methods, GET, POST, and PUT, identify the
corresponding method in the HttpServlet class.

1.2

For each of the HTTP methods, GET, POST, and HEAD, identify
triggers that might cause a browser to use the method, and identify benefits
or functionality of the method.

1.3

For each of the following operations, identify the interface and
method name that should be used:

�

Retrieve HTML form parameters from the request

�

Retrieve a servlet initialization parameter

�

Retrieve HTTP request header information

�

Set an HTTP response header; set the content type of the response

�

Acquire a text stream for the response

�

Acquire a binary stream for the response

�

Redirect an HTTP request to another URL

1.4

Identify the interface and method to access values and resources
and to set object attributes within the following three Web scopes:

�

Request

�

Session

�

Context

1.5

Given a life-cycle method: init, service, or destroy, identify correct
statements about its purpose or about how and when it is invoked.

1.6

Use a RequestDispatcher to include or forward to a Web resource.

http://www.sybex.com

xxiv

Exam Objectives

Section 2—The Structure and Deployment of Modern

Servlet Web Applications

2.1

Identify the structure of a Web Application and Web Archive file,
the name of the WebApp deployment descriptor, and the name of the
directories where you place the following:

�

The WebApp deployment descriptor

�

The WebApp class files

�

Any auxiliary JAR files

2.2

Match the name with a description of purpose or functionality, for
each of the following deployment descriptor elements:

�

Servlet instance

�

Servlet name

�

Servlet class

�

Initialization parameters

�

URL to named servlet mapping

Section 3—The Servlet Container Model

3.1

Identify the uses for and the interfaces (or classes) and methods to
achieve the following features:

�

Servlet context init. parameters

�

Servlet context listener

�

Servlet context attribute listener

�

Session attribute listeners

3.2

Identify the WebApp deployment descriptor element name that
declares the following features:

�

Servlet context init. parameters

�

Servlet context listener

�

Servlet context attribute listener

�

Session attribute listeners

http://www.sybex.com

Exam Objectives

xxv

3.3

Distinguish the behavior of the following in a distributable:

�

Servlet context init. parameters

�

Servlet context listener

�

Servlet context attribute listener

� Session attribute listeners

Section 4—Designing and Developing Servlets to Handle

Server-side Exceptions

4.1 For each of the following cases, identify correctly constructed code
for handling business logic exceptions, and match that code with correct
statements about the code’s behavior: Return an HTTP error using the
sendError response method; Return an HTTP error using the setStatus
method.

4.2 Given a set of business logic exceptions, identify the following: The
configuration that the deployment descriptor uses to handle each excep-
tion; How to use a RequestDispatcher to forward the request to an error
page; Specify the handling declaratively in the deployment descriptor.

4.3 Identify the method used for the following: Write a message to the
WebApp log; Write a message and an exception to the WebApp log.

Section 5—Designing and Developing Servlets Using

Session Management

5.1 Identify the interface and method for each of the following:

� Retrieve a session object across multiple requests to the same or
different servlets within the same WebApp

� Store objects into a session object

� Retrieve objects from a session object

� Respond to the event when a particular object is added to a session

� Respond to the event when a session is created and destroyed

� Expunge a session object

5.2 Given a scenario, state whether a session object will be invalidated.

http://www.sybex.com

xxvi Exam Objectives

5.3 Given that URL-rewriting must be used for session management,
identify the design requirement on session-related HTML pages.

Section 6—Designing and Developing Secure Web

Applications

6.1 Identify correct descriptions or statements about the security issues:

� Authentication, authorization

� Data integrity

� Auditing

� Malicious code

� Web site attacks

6.2 Identify the deployment descriptor element names, and their struc-
ture, that declare the following:

� A security constraint

� A Web resource

� The login configuration

� A security role

6.3 Given an authentication type: BASIC, DIGEST, FORM, and
CLIENT-CERT, identify the correct definition of its mechanism.

Section 7—Designing and Developing Thread-safe Servlets

7.1 Identify which attribute scopes are thread-safe:

� Local variables

� Instance variables

� Class variables

� Request attributes

� Session attributes

� Context attributes

http://www.sybex.com

Exam Objectives xxvii

7.2 Identify correct statements about differences between the multi-
threaded and single-threaded servlet models.

7.3 Identify the interface used to declare that a servlet must use the
single-thread model.

Section 8—The Java Server Pages (JSP) Technology Model

8.1 Write the opening and closing tags for the following JSP tag types:

� Directive

� Declaration

� Scriptlet

� Expression

8.2 Given a type of JSP tag, identify correct statements about its
purpose or use.

8.3 Given a JSP tag type, identify the equivalent XML-based tags.

8.4 Identify the page directive attribute, and its values, that:

� Import a Java class into the JSP page

� Declare that a JSP page exists within a session

� Declare that a JSP page uses an error page

� Declare that a JSP page is an error page

8.5 Identify and put in sequence the following elements of the JSP page
lifecycle:

� Page translation

� JSP page compilation

� Load class

� Create instance

� Call jspInit

� Call _jspService

� Call jspDestroy

http://www.sybex.com

xxviii Exam Objectives

8.6 Match correct descriptions about purpose, function, or use with
any of the following implicit objects:

� request

� response

� out

� session

� config

� application

� page

� pageContext

� exception

8.7 Distinguish correct and incorrect scriptlet code for:

� A conditional statement

� An iteration statement

Section 9—Designing and Developing Reusable

Web Components

9.1 Given a description of required functionality, identify the JSP page
directive or standard tag in the correct format with the correct attributes
required to specify the inclusion of a Web component into the JSP page.

Section 10—Designing and Developing JSP Pages Using

JavaBean Components

10.1 For any of the following tag functions, match the correctly
constructed tag, with attributes and values as appropriate, with the
corresponding description of the tag’s functionality:

� Declare the use of a JavaBean component within the page.

� Specify, for jsp:useBean or jsp:getProperty tags, the name of an
attribute.

� Specify, for a jsp:useBean tag, the class of the attribute.

� Specify, for a jsp:useBean tag, the scope of the attribute.

http://www.sybex.com

Exam Objectives xxix

� Access or mutate a property from a declared JavaBean.

� Specify, for a jsp:getProperty tag, the property of the attribute.

� Specify, for a jsp:setProperty tag, the property of the attribute to
mutate, and the new value.

10.2 Given JSP page attribute scopes: request, session, application,
identify the equivalent servlet code.

10.3 Identify techniques that access a declared JavaBean component.

Section 11—Designing and Developing JSP pages Using

Custom Tags

11.1 Identify properly formatted tag library declarations in the Web
application deployment descriptor.

11.2 Identify properly formatted taglib directives in a JSP page.

11.3 Given a custom tag library, identify properly formatted custom
tag usage in a JSP page. Uses include:

� An empty custom tag

� A custom tag with attributes

� A custom tag that surrounds other JSP code

� Nested custom tags

Section 12—Designing and Developing a Custom

Tag Library

12.1 Identify the tag library descriptor element names that declare the
following:

� The name of the tag

� The class of the tag handler

� The type of content that the tag accepts

� Any attributes of the tag

12.2 Identify the tag library descriptor element names that declare the
following:

� The name of a tag attribute

http://www.sybex.com

xxx Exam Objectives

� Whether a tag attribute is required

� Whether or not the attribute’s value can be dynamically specified

12.3 Given a custom tag, identify the necessary value for the bodycon-
tent TLD element for any of the following tag types:

� Empty-tag

� Custom tag that surrounds other JSP code

� Custom tag that surrounds content that is used only by the tag
handler

12.4 Given a tag event method (doStartTag, doAfterBody, and doEnd-
Tag), identify the correct description of the method’s trigger.

12.5 Identify valid return values for the following methods:

� doStartTag

� doAfterBody

� doEndTag

� PageContext.getOut

12.6 Given a “BODY” or “PAGE” constant, identify a correct descrip-
tion of the constant’s use in the following methods:

� doStartTag

� doAfterBody

� doEndTag

12.7 Identify the method in the custom tag handler that accesses:

� A given JSP page’s implicit variable

� The JSP page’s attributes

12.8 Identify methods that return an outer tag handler from within an
inner tag handler.

Section 13

13.1 Given a scenario description with a list of issues, select the design
pattern (Value Objects, MVC, Data Access Object, or Business Delegate)
that would best solve those issues.

http://www.sybex.com

Tips for Taking the Exam xxxi

13.2 Match design patterns with statements describing potential ben-
efits that accrue from the use of the pattern, for any of the following
patterns:

� Value Objects

� MVC

� Data Access Object

� Business Delegate

Tips for Taking the Exam

Here are some general tips for taking your exam successfully:

� Bring two forms of ID with you. One must be a photo ID, such as a
driver’s license. The other can be a major credit card or a passport.
Both forms must contain a signature.

� Arrive early at the exam center so you can relax and review your study
materials, particularly tables and lists of exam-related information.

� Read the questions carefully. Don’t be tempted to jump to an early
conclusion. Make sure you know exactly what the question is asking.

� Don’t leave any unanswered questions. Unanswered questions are
scored against you.

� There will be questions with multiple correct responses. When there is
more than one correct answer, a message at the bottom of the screen
will prompt you to “Choose all that apply.” Be sure to read the
messages displayed.

� When answering multiple-choice questions you’re not sure about, use
a process of elimination to get rid of the obviously incorrect answers
first. This will improve your odds if you need to make an educated
guess.

� On form-based tests, because the hard questions will eat up the most
time, save them for last. You can move forward and backward through
the exam. (When the exam becomes adaptive, this tip will not work.)

http://www.sybex.com

xxxii About the Authors

� For the latest pricing on the exams and updates to the registration pro-
cedures, call Sun Microsystems at (800) 422-8020. If you have further
questions about the scope of the exams or related Sun certifications, refer
to the Sun website, http://suned.sun.com/US/certification
/register/index.html.

About the Authors

Natalie Levi is a Sun Certified Java instructor, programmer, distributed
developer, and web component developer. As owner of Educational Edge,
Inc., she and her group consult for various companies, such as Sun Micro-
systems, to provide educational solutions to current Java technologies.
Besides running a business, teaching and developing, Natalie performed the
technical edit to the Java 2 Certification Study Guide, as well as coauthored
the Sybex practice exam software package to supplement the guide. You can
e-mail her at nlevi@educationaledge.net.

Philip Heller is an author, public speaker, and consultant. He has been
instrumental in the creation and maintenance of the Java Programmer and
Developer exams. His popular seminars on certification have been delivered
internationally. He is the co-author of several of books on Java, all available
from Sybex. His first novel, “Grandfather Dragon”, will be published as
soon as a fiction publisher can be found.

http://www.sybex.com

Assessment Test

1. Hidden values are retrieved by using which of the following
mechanisms?

A. The URI

B. The ServletRequest object

C. The HttpServletRequest object

D. The HttpSession object

2. Which of the following methods is used to extract a session ID from
a manually rewritten URL?

A. getParameter(String name)

B. getSessionID()

C. getPathInfo()

D. getID()

3. In which of the following scenarios will a session always be invali-
dated? (Choose all that apply.)

A. A site using hidden values displays a static e-mail page.

B. A client disconnects.

C. close() is called on the session object.

D. The session times out.

4. Which object type is used to invoke the method encodeURL
(String url)?

A. HttpServletRequest

B. HttpServletResponse

C. HttpSession

D. ServletRequest

http://www.sybex.com

xxxiv Assessment Test

5. What approach should be used to rewrite the URL if a servlet needs to
send the current request to another servlet?

A. encodeRedirectURL(String url)

B. encodeURL(String url)

C. All URLs must have the session ID concatenated to the value.

D. It is done automatically.

6. Which of the following names must be used to identify a session ID
when rewriting the URL?

A. JSESSIONID

B. sessionID

C. ID

D. jsessionid

7. Which of the following statements is false?

A. Cookies can be stored to the browser, request object, or other
resource.

B. An HttpSession object can store cookie or URL rewritten data.

C. URL rewriting stores data in a session object or other resource.

D. Hidden values store data to the request object.

E. None of the above.

8. Which of the following methods is invoked when
removeAttribute(String name) is called on a session object?

A. valueRemoved(HttpSessionBindingEvent event)

B. attributeRemoved(HttpSessionBindingEvent event)

C. valueUnbound(HttpSessionBindingEvent event)

D. attributeUnbound(HttpSessionBindingEvent event)

http://www.sybex.com

Assessment Test xxxv

9. Which of the following methods is called when a session object is
destroyed?

A. class: HttpSessionListener, method:
sessionDestroyed(HttpSessionEvent event)

B. class: HttpSessionBindingListener, method:
sessionDestroyed(HttpSessionBindingEvent event)

C. class HttpSessionListener, method:
sessionInvalidated(HttpSessionEvent event)

D. class HttpSessionBindingListener, method:
sessionInvalidated(HttpSessionEvent event)

10. Which of the following options causes the server to invalidate a
session after 15 seconds?

A. <session-config>
<session-timeout>
 15
</session-timeout>
</session-config>

B. <session-config>
 <session-timeout>
 <timeout-value-seconds>
 15
 </timeout-value-seconds>
 </session-timeout>
</session-config>

C. class: SerlvetContext, method: setMaxInactiveTime(15)

D. class: HttpSession, method: setMaxInactiveInterval(15)

11. Which of the following variable types are intrinsically thread-safe?
(Choose all that apply.)

A. Local

B. Class

C. Instance

D. Method parameters

http://www.sybex.com

xxxvi Assessment Test

12. Synchronizing code can cause which of the following effects?

A. Increased resource utilization

B. Reduction in performance

C. Deadlock

D. All of the above

13. Which of the following statements is false?

A. Class variables are shared among all instances of a servlet.

B. A server can create a new instance of the same servlet for each
registered name defined.

C. Class variables are not thread-safe.

D. Class variables are treated the same as instance variables.

14. Which of the following attributes are rarely thread-safe?

A. Request attributes

B. Session attributes

C. Context attributes

D. None of the above

15. Given a class implements the SingleThreadModel interface, which of
the following statements is false?

A. The container could create multiple instances of the servlet and
store them within a pool.

B. Only one thread can access the service(…) method at a time.

C. Class variables are protected.

D. Instance variables are protected.

16. When a servlet implements the SingleThreadModel interface,
which of the following value types are thread-safe? (Choose all that
apply.)

http://www.sybex.com

Assessment Test xxxvii

A. Instance variables

B. Class variables

C. Request attributes

D. Session attributes

17. Synchronizing which of the following can ensure thread-safety?

A. Local variables

B. Session attributes

C. Context attributes

D. All of the above

18. Which of the following methods returns the outer tag’s handle from
within an inner tag? (Choose all that apply.)

A. getOuterTag()

B. getTag()

C. getParent()

D. findAnscestorWithTag(Tag from, Class type)

19. Which of the following tags is used within a tag library descriptor to
define the type of data that the tag accepts?

A. body

B. body-content

C. bodyData

D. bodycontent

20. Which of the following statements is true?

A. The JSP page must include a taglib element to identify which tag
libraries to load into memory.

B. The web.xml document must use a taglib element to identify the
location of the TLD file.

C. The TLD file must use the taglib element to identify each custom
tag and its attributes.

D. All of the above.

http://www.sybex.com

xxxviii Assessment Test

21. Given the following tag description, which tag element is invalid?

<tag>

 <name>goodbye</name>

 <tagclass>tagext.GoodByeTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>Second example</info>

 <attribute>

 <name>age</name>

 <isRequired>true</isRequired>[

 <rtexprvalue>true</rtexprvalue>

 <type>java.lang.Integer</type>

 </attribute>

</tag>

A. name

B. isRequired

C. rtexprvalue

D. bodycontent

22. Which of the following tag elements within the TLD is used to define
the tag suffix within the JSP?

A. name

B. tag-name

C. tag-class

D. tag

23. Which of the following options enables a custom tag access to a JSP
page’s implicit variables?

A. If the custom tag implements the Tag interface, the pageContext
handle is automatically provided.

B. If the custom tag implements the BodyTag interface, a local
instance of the pageContext must be saved using the
setPageContext(PageContext pageContext) method.

C. If the custom tag extends the BodySupportTag, the pageContext
is automatically provided.

D. None of the above.

http://www.sybex.com

Assessment Test xxxix

24. What is the default return value for the doAfterBody() method when
a custom tag extends the BodySupportTag class?

A. EVAL_BODY_BUFFERED

B. EVAL_BODY_INCLUDE

C. EVAL_BODY_AGAIN

D. SKIP_BODY

25. Which of the following options is not a valid return type for the
doStartTag() method, if the custom tag implements the
IterationTag interface? (Choose all that apply.)

A. EVAL_BODY_INCLUDE

B. SKIP_BODY

C. EVAL_BODY_BUFFERED

D. EVAL_PAGE

26. If a SKIP_PAGE is returned, which of the following statements is correct?

A. If the request was created from a forward or include, both the
original and new request are complete.

B. The rest of the page should not be evaluated.

C. The body should be reevaluated.

D. The doAfterPage() method is evaluated next.

27. Your current application performs slowly due to the number of times
the database must be accessed to retrieve a record. What design pat-
tern should be incorporated to reduce the number of calls necessary to
complete a single transaction?

A. Value Objects

B. MVC

C. Data Access Object

D. Business Delegate

http://www.sybex.com

xl Assessment Test

28. Which of the following patterns helps separate work tasks, improve
maintainability, and enable extensibility?

A. Value Objects

B. MVC

C. Data Access Object

D. Business Delegate

29. If the server’s root directory is called /root and your application con-
text is /test, which of the following options describes the default
location for the application’s WAR file called app.war?

A. web-server/root/test/app.war

B. web-server/test/app.war

C. web-server/test/WEB-INF/app.war

D. web-server/root/WEB-INF/applwar

30. Assuming the application’s context directory is defined as /context,
which of the following files are visible to the client? (Choose all that
apply.)

A. /context/index.html

B. /context/WEB-INF/image.gif

C. /context/welcome.jsp

D. /context/WEB-INF/lib/audio.au

31. In which directory are JAR files placed?

A. Directly in the application’s context directory

B. Directly within the /WEB-INF directory

C. Directly within the /WEB-INF/classes directory

D. Directly within the /WEB-INF/lib directory

http://www.sybex.com

Assessment Test xli

32. In which directory should you find the web.xml file?

A. The context directory

B. The /WEB-INF directory

C. The /WEB-INF/classes directory

D. The /WEB-INF/lib directory

33. Which option best describes how to define a servlet’s name and class
type within the deployment descriptor?

A. <servlet>
 <name>Search</name>
 <class>SearchServlet</class>
 </servlet>

B. <servlet>
 <servletName>Search</servletName>
 <servletClass>SearchServlet</servletClass>
 </servlet>

C. <servlet>
 <servlet-name>Search</servlet-name>
 <servlet-class>SearchServlet</servlet-class>
 </servlet>

D. <servlet name=“Search” class=“SearchServlet” />

34. Which of the following tags represents a servlet instance?

A. servlet-name

B. servlet-instance

C. servlet

D. instance

35. If MyServlet needs to have a variable initialized to a value of 5, which
of the following tag groups enables the servlet to extract the appropri-
ate information using its request object?

http://www.sybex.com

xlii Assessment Test

A. <context path=“/features” docbase=“
 c:/projects/features” reloadable=“true”>
 <context-param>
 <name>SEARCH_PATH</name>
 <value>/features/utilities</value>
 </context-param>
 </context>

B. <context path=“/features” docbase=“
 c:/projects/features” reloadable=“true”>
 <context-param>
 <param-name>SEARCH_PATH</param-name>
 <param-value>/features/utilities</param-value>
 </context-param>
 </context>

C. <servlet>
 <servlet-name>MyServlet</servlet-name>
 <servlet-class>MyServlet</servlet-class>
 <param>
 <param-name>defaultType</param-name>
 <param-value>5</param-value>
 </param>
 </servlet>

D. <servlet>
 <servlet-name>MyServlet</servlet-name>
 <servlet-class>MyServlet</servlet-class>
 <init-param>
 <param-name>defaultType</param-name>
 <param-value>5</param-value>
 </init-param>
 </servlet>

36. Which tags will you use to enable the server to locate a servlet if it is
located in a directory other than the standard /WEB-INF/classes?
(Choose all that apply.)

A. url

B. url-pattern

C. url-mapping

D. servlet-mapping

http://www.sybex.com

Assessment Test xliii

37. If you are monitoring your system by checking logs and ensuring cer-
tain groups are accessing only their designated areas, which option
best describes your actions?

A. Authorizing

B. Authenticating

C. Auditing

D. Assuring integrity

38. Which deployment descriptor element is used to define the type of
authentication?

A. authentication

B. auth

C. auth-role

D. auth-method

39. What is the immediate parent element to the form-login-page or
form-error-page tag?

A. form-login-config

B. form-login

C. form

D. config

40. Which of the following tags is used to define an application’s resource
areas and the different roles and request types that have access to
those areas?

A. security

B. security-config

C. security-constraint

D. security-role

http://www.sybex.com

xliv Assessment Test

41. In which of the following classes will you find the sendError() method?

A. HttpServletRequest

B. HttpServletResponse

C. ServletContext

D. ServletResponse

42. Which of the following is a legal exception-type description?

A. javax.servlet.ServletException

B. ServletException

C. javax.servlet.http.UnavailableException

D. UnavailableException

43. Which of the following methods is invoked when an HTTP PUT
request is made?

A. doGet(…)

B. doPost(…)

C. doPut(…)

D. doAll(…)

44. Which of the following objects would you use to set an attribute if
your goal is to have that value shared among all application servlets
for the life of the application?

A. HttpSession

B. ServletContext

C. ServletConfig

D. GenericServlet

45. Which listener is notified when a context is destroyed?

A. ServletContextListener

B. ContextListener

C. ServletContextAttributeListener

D. ServletListener

http://www.sybex.com

Assessment Test xlv

46. Which deployment descriptor tag is used to declare a session attribute
listener?

A. distributable

B. distributable-listener

C. listener

D. listener-name

47. Which option provides the best location to store data in a distributable
environment?

A. Static variable

B. Instance variable

C. ServletContext

D. HttpSession

48. Which directive is used to import a Java class into a JSP page?

A. <%= page import=“java.io.*, java.util.*” %>

B. <%@ page import=“java.io.*” />

C. <%@ page import=“java.io.*, java.util.*” %>

D. None of the above

49. Which option provides the correct XML translation for the following
scriptlet?

<%@ taglib uri=“URIForLibrary” prefix=“tagPrefix” %>

A. <jsp:taglib taglibDirective />

B. <jsp:directive.taglib taglibDirective />

C. <jsp:directive.taglib taglibDirective >

D. None

50. Which statement best describes the purpose of the following syntax?

<% … %>

http://www.sybex.com

xlvi Assessment Test

A. Declares Java variables and methods

B. Is a valid statement of logic

C. Provides global information to the page

D. Provides code fragments

51. What is the expected outcome of the following code snippet?

<% for(int i=0; i<1; i++) %>

do something!

<% System.out.println("i is equal to: " + i); %>

A. The loop displays “do something! i is equal to: 0.”

B. The loop displays “do something!” on the first line and “i is equal
to: 0” on the next.

C. The loop displays “do something!”

D. The code does not compile.

52. Which of the following listeners is called when a session is created?

A. HttpSessionBindingListener

B. HttpSessionListener

C. HttpSessionChangedListener

D. SessionListener

53. Which of the following deployment descriptor tags identifies the
HTML page used to validate a user with FORM authentication?

A. <form-login></form-login>

B. <form-login-page> </form-login-page>

C. <form-access-page></form-access-page>

D. <form-authentication></form-authentication>

http://www.sybex.com

Assessment Test xlvii

54. Which of the following elements is used to list all security roles?

A. security-constraint

B. web-resource-collection

C. auth-constraint

D. role-constraint

55. Where must modifications be made to limit security access within a
method for a particular user?

A. Within the deployment descriptor

B. Within the servlet program

C. Within the index.html file

D. Within the web server’s configuration file

56. In what order must the following security elements be listed in the
deployment descriptor?

A. security-constraint, login-config, security-role.

B. login-config, security-role, security-constraint.

C. security-constraint, login-config, security-role.

D. Order does not matter.

57. What is the expected output of the following code snippet?

<% if(true) %>

 To be

<% else { %>

 or not to be

<% } %>

A. To be

B. or not to be

C. To be, or not to be

D. The code will not compile.

http://www.sybex.com

xlviii Assessment Test

58. Which of the following is not a valid implicit object?

A. pageContext

B. config

C. out

D. page

E. None of the above

59. Which of the following attributes is set for a RequestDispatcher
using the getRequestDispatcher(…) method? (Choose all that
apply.)

A. context_path

B. path_info

C. query_string

D. None of the above

60. Which of the following implicit objects has a page scope? (Choose all
that apply.)

A. exception

B. request

C. config

D. pageContext

61. Which of the following options is not a valid attribute for the
jsp:setProperty action?

A. name

B. scope

C. param

D. value

62. If you would like to include an applet in your JSP page, which of the
following directives or tags would you use?

http://www.sybex.com

Assessment Test xlix

A. <%@ page name=“applet” value=“MyApplet.class” />

B. <%@ include file=“home/MyApplet.class” %>

C. <jsp:plugin type=applet code=MyApplet.class />

D. <jsp:include page=“home/MyApplet.class” />

63. When a JSP page is translated, in which method are scriptlets placed?

A. jspInit()

B. _jspInit()

C. _jspService()

D. service()

64. Assuming a JavaBean instance accountData, the JSP line
<jsp:setProperty name="accountData" property="*" /> will
do what?

A. Set all the fields of accountData that have a corresponding
HttpServletRequest property

B. Instantiate another identical instance of accountData

C. Call the constructor of the accountData bean

D. Allow any property on accountData to be accessed via a corre-
sponding “get” method

65. Identify the deployment descriptor tags used to define a filter:

A. <filter><filter-name></filter-name><filter-url>
</filter-url></filter>

B. <filter><filter-name></filter-name><filter-class>
</filter-class></filter>

C. <filter-mapping><filter-name></filter-name>
<filter-url></filter-url></filter-mapping>

D. <filter-mapping><filter-name></filter-name>
<url-pattern></url-pattern></filter-mapping>

http://www.sybex.com

l Answers to Assessment Test

Answers to Assessment Test

1. B. When a request object is triggered within a form, its hidden values
are stored within the actual request object. Using the ServletRequest’s
method getParameter(String name), you can extract the hidden
value by passing its name to the method.

2. C. The HttpServletRequest class contains the path information
containing the session ID. The method getPathInfo() returns the
path information listed after the servlet path and before the query
string.

3. D. A session can exist beyond the client. To manually discard a
session, you must call invalidate()—not close(). Hidden values
are useful only if you can propagate the values through dynamic pages.
After a static page is used, hyperlinks or browser triggers are the only
way to navigate. Those options do not allow for the inclusion of hid-
den values. However, if the site is configured to use cookies for session
management, the session may continue, and using hidden values will
not result in the removal of the session. Finally, a session can time out,
resulting in the removal of the session object.

4. B. To extract a rewritten URL, the HttpServletRequest class is
used. To rewrite the URL by using provided methods, you must use
the HttpServletResponse class.

5. A. When redirecting a response, the encodeRedirectURL(…) method
should be used to encode the current session ID in the URL. Because a
redirect URL is stored differently than a normal URL, you must use
a different method to generate the appropriate URL output.

6. D. The specification states that the name associated to the session
value must be jsessionid. For cookies, the session name is written
with all capitals; however, for URL rewriting, the specification
SRV.7.1.3 states that the name must be written with lowercase letters.

7. E. Cookies are data objects written to the response object and stored
on the browser. They can be retrieved by using the request object.
Cookies can also be added as an attribute to the session object or writ-
ten to a database. A session object acts like a storage unit. It can contain
data from cookies or URL rewriting. URL rewriting is a way to store
the session ID. The ID can then be linked to any resource that allows
data to be stored. Finally, hidden values can be accessed via the
request object.

http://www.sybex.com

Answers to Assessment Test li

8. C. When an attribute is unbound from a session, an HttpSession
BindingEvent is generated and sent to all registered Http
SessionBindingListeners via the valueUnbound(…) method.

9. A. A class that implements the interface HttpSessionListener
must define the method sessionDestroyed (HttpSessionEvent
event). This method is then called when a session is invalidated.

10. D. When the session-time value is set within the deployment descrip-
tor, it is defined using minutes. There is no tag available to change that
time measurement to any other value. For granular control using
seconds, you can set the maximum inactive period by using the session
object.

11. A, D. Local variables and method parameters are stored on the stack.
Because each thread is provided its own stack, there are no threading
issues to be concerned with, in regard to these variables.

12. D. Synchronized code blocks are usually encouraged to ensure the
integrity of instance variables. Their use, however, can cause an increase
of resources, because the system needs to transfer the lock between
threads. In addition, locking code causes a reduction in performance as
other threads must wait for the lock. Finally, deadlock can result from
locking too much information.

13. D. Class variables are shared among all instances of a servlet.
Because the server can create a new servlet instance for each registered
name, the instance variable is handled differently than the class vari-
able. The instance variable is accessed each time a particular instance
is used, whereas the class variable is accessed each time any instance
of that servlet is used. Because more than one thread can access a class
variable at a time, it too is not thread-safe.

14. D. Request attributes are tied to the request object and managed by
the RequestDispatcher to ensure that each request is assigned to
a separate thread. Session attributes act in a similar way. They are
assigned to each client through the request object, and threading is
handled internally. Consequently, there is no need to worry about
threading issues. Finally, context attributes are safe assuming the
setAttribute(…) method is synchronized. Usually it is, so context
attributes are almost always thread-safe.

http://www.sybex.com

lii Answers to Assessment Test

15. C. Because a container can pool many instances of the same servlet,
each thread can access a different instance and utilize any service(…)
method simultaneously with another thread. Consequently, if one
thread changes the value of a class variable, and another does the same,
the first might expect a certain result after the change, but might expe-
rience the effects of another servlet’s alteration instead.

16. A, C, D. Instance variables are protected because the Single
ThreadModel interface ensures that only one thread will access an
instance’s service(…) method at a time. Class variables are not so
fortunate. Because request and session attributes are inherently
thread-safe, implementing the interface has no effect.

17. D. Synchronizing changes to any attribute or value will ensure that only
one thread can access that variable in that block at a time.

18. C, D. The getParent() method returns the immediate outer tag
handle, whereas the findAnscestorWithTag(…) method can return
any outer tag surrounding the current tag.

19. D. The bodycontent tag is used to define how the tag should han-
dle content existing between the opening and closing tags. The three
options are empty, JSP, or tagdependent.

20. D. The taglib element serves a different purpose within each
document.

21. B. The element name is used to identify the name used to access the
tag, whereas rtexprvalue is used to define wither the attribute value
can be dynamically specified. Finally, bodycontent is used to identify
how to handle the content between the tags. isRequired is incorrect.
The correct element is required. It is used to define whether a tag
attribute is required.

22. A. The value assigned to the name element is used to define the
custom tag suffix within the JSP page.

23. C. A custom tag that implements any interface must define the
method setPageContext(PageContext pageContext) and save a
local instance to have access to all other implicit variables. Support
classes define this method and enable the pageContext handle to be
accessed by subclasses.

24. D. By default, the doAfterBody() and doStartTag() methods
return the constant SKIP_BODY.

http://www.sybex.com

Answers to Assessment Test liii

25. C, D. The EVAL_BODY_BUFFERED constant is a valid return type only
if the tag utilizes the body content. This feature is available only when
the tag uses a class or interface that implements the BodyTag interface.
The EVAL_PAGE constant is a valid return only for the doEndTag()
method.

26. B. The first option is not true because only the current request is com-
plete, not the originating page. After SKIP_PAGE is returned, the body
is complete, as is the rest of the page.

27. A. By creating a value object for each record, you need to make only
a single request instead of multiple calls for each element of a record.

28. B. The Model View Controller design pattern separates controller code
from graphical or view code. Pulling the model out of the Presentation
layer enables the application to grow without affecting existing pieces.
It also provides easier maintainability because each piece is designated
to accomplish a specific task.

29. A. The WAR file should be placed in the web server’s application
root directory (the directory preceding the context).

30. A, C. All files located in the /context directory, and any subdirec-
tory other than WEB-INF, are visible to the client.

31. D. All JAR files should be placed in the /WEB-INF/lib directory for
a particular application.

32. B. The deployment descriptor should be placed directly in the
/WEB-INF directory.

33. C. When defining a servlet, the name is specified by using the tag
servlet-name, whereas the class name uses the tag servlet-class.

34. A. The servlet-class tag can be used several times within a servlet
tag. What distinguishes one instance from another is the servlet-name.
Most containers will create an instance for each registered name.

35. D. A servlet can have its own set of initialization parameters by using
the tag init-param. Parameters that apply to the entire application
context are placed within the context-param tags.

36. B, D. The servlet-mapping outer tag specifies the servlet-name
and url-pattern, defining where the server can locate the specified
servlet.

http://www.sybex.com

liv Answers to Assessment Test

37. C. Auditing is the act of monitoring a system to ensure that all users
are accessing files within their defined security realm.

38. D. The auth-method tag defines one of four authentication types:
BASIC, FORM, DIGEST, and CLIENT-CERT.

39. A. The form-login-config tag is used to define any custom or error
pages. It is used only with the FORM authentication method.

40. C. The security-constraint tag is used to define all web-
resource-collection elements, which include the name, URL,
accessible method, and all auth-constraint roles that can access
those areas.

41. B. The HttpServletResponse class provides the sendError()
method to provide the client with an HTML-formatted error page
created by the server.

42. A. The exception-type tag requires the fully qualifying exception
name that includes the package name. The third option fails because
the UnavailableException is part of the javax.servlet package,
not the javax.servlet.http package.

43. C. A PUT request is sent to a servlet’s doPut(…) method to enable the
client to place a resource on the server.

44. B. An HttpSession provides access for the life of the session of a single
client rather than for the life of the application. The ServletConfig
object is incorrect because it is used to get initialization parameters
rather than set attributes. Finally, GenericServlet applies only to
the servlet at hand.

45. A. The ServletContextListener’s method contextDestroyed
(ServletContextEvent e) is called when a context is removed.

46. C. The distributable tag marks whether an application is likely to
run on multiple systems. The listener tag, however, identifies any
listener-class names that must be registered with the container.

47. D. Static variables are shared only within the same JVM. In a distrib-
uted environment, a new static variable is initialized when a servlet is
accessed in a different system. The same is true with instance vari-
ables, except they have an even smaller scope. The ServletContext
applies to the entire application; however, in a distributable environ-
ment, a new ServletContext is created when an application is
moved. A session object is the ideal location, because all serializable
data is transferred in a distributed environment.

http://www.sybex.com

Answers to Assessment Test lv

48. C. A page directive uses the <%@ … %> syntax. It can import more
than one class group by using commas to separate each package type.

49. D. There is no XML translation for the taglib directive. You must
use the scriptlet syntax.

50. D. The syntax <% … %> identifies a scriptlet. Its code is translated into
the JSP’s service method as code fragments.

51. D. If a for loop does not have an opening and closing brace, the loop
applies only to the first line after the block declaration. As a result, the
variable i is out of scope, because it is referenced on the second line
after the block declaration.

52. B. The HttpSessionListener is called when a session is created and
destroyed.

53. B. The <form-login-page> tag identifies the form used when
protected code is requested in an application that uses form-based
authentication.

54. C. The auth-constraint element contains a role-name tag used to
define each role with access to the specified file.

55. B. Modifications to the deployment descriptor enable an application
to control file access for roles. User security must be handled from
within the servlet itself.

56. A. The security-constraint tag must be used first to list the
resources and roles that require security. The login-config is
defined next to specify the type of container authentication. Finally,
the security-role tag is listed to identify the roles with access.

57. A. When a scriptlet is translated within the servlet, tags are removed
and text outside the scriptlet code is written to the output stream buffer.
The code snippet translates to the following:

if(true)

 out.println(“To be”);

else {

 out.println(“or not to be”);

}

Consequently, the if block is entered and “To be” is printed.

58. E. The first four options are all valid implicit objects; config, out,
and page are bound to the pageContext object.

http://www.sybex.com

lvi Answers to Assessment Test

59. A, B, C. When accessing a RequestDispatcher through the method
getRequestDispatcher(…), all defined attributes are set; if, however,
the dispatcher was accessed by using the getNameDispatcher(…)
method, these values would not be defined.

60. A, C, D. Six implicit objects have a page scope. They are config,
response, pageContext, out, page, and exception. After these
variables exit the current page, a new instance is used.

61. B. The scope attribute is actually used with the jsp:useBean action
to define the bean’s availability.

62. C. The first option fails because the page directive is used to define
attributes for the entire JSP page, rather than to include a component
in the page. The second option is invalid because the include direc-
tive is used for static files. Finally, the last option fails because you
cannot include an applet as a page. An applet requires the interpreter
to run, rather than the container to read a static or dynamic file—
instead the jsp:plugin action should be used.

63. C. A JSP page is translated to a servlet that includes the method _
jspService(). All scriptlet code is placed inside this method.

64. A. By using a setProperty tag and identifying the property value as
an asterisk, all instance variables that map to the request parameters
will be defined.

65. B. A Filter is defined using the outer tag filter, and the inner tags
filter-name, which defines the name of the filter, and filter-class,
which defines the actual class name. The last option is incorrect because
since the filter-mapping tag is used to identify which files or objects the
filter will be performed on.

http://www.sybex.com

Chapter

1

The Web Client Model

THE FOLLOWING SUN CERTIFIED WEB
COMPONENT DEVELOPER FOR J2EE
PLATFORM EXAM OBJECTIVES COVERED
IN THIS CHAPTER:

�

1.1 For each of the HTTP methods,

GET

,

POST

, and

PUT

, identify

the corresponding method in the

HttpServlet

 class.

�

1.2 For each of the HTTP methods,

GET

,

POST

, and

HEAD

, identify

triggers that might cause a browser to use the method, and

identify benefits or functionality of the method.

http://www.sybex.com

B

efore you can understand HTTP methods, it is important that
you have a general overview of the J2EE architecture. Within this structure,
HTTP methods represent one of many pieces used within an entire web
application to communicate information. In fact, HTTP methods are utilized
by the browser to transfer specific requests to a receiving component. These
methods do not operate in a vacuum. Instead, an HTML trigger sparks the
request, which uses the HTTP protocol to transmit information to a poten-
tial component, such as a servlet or JSP. In this chapter, each element leading
up to the servlet or JSP will be examined to ensure you understand how each
HTTP method behaves. Later chapters will cover servlets and JSPs. For now
our focus is to:

�

Introduce the Java Enterprise (J2EE) model

�

Present the Hypertext Markup Language (HTML) tags

�

Present the Hypertext Transmission Protocol (HTTP)

�

Define an HTTP client request, server response, and HTTP request
methods

After discussing the J2EE model, we will zero in on its Presentation tier (or
the Web Client model). Beginning with HTML, each tag will be covered to
identify its functionality and associated trigger. Because the browser uses the
HTTP protocol to transfer client-entered data to its intended destination,
the protocol will be discussed next. The information is transferred in the form
of a request, which contains one of several HTTP request methods. We will
thoroughly discuss each possible method and the characteristics of the
respective response. Our goal is to ensure that you have a thorough under-
standing of each method and its associated components.

http://www.sybex.com

Introduction to the J2EE Model

3

Introduction to the J2EE Model

“W

rite once,

run

 anywhere” was the first phrase Java developers
grew accustomed to hearing. As the language developed and matured, it
began to have an impact on the entire network and took on an additional
phrase, “Write once,

implement

 anywhere.” This phrase is the foundation
behind the Java 2 Enterprise Edition (J2EE) architecture. Although com-
plex architectures existed before Java, they were limited in flexibility
because their applications were forced to be vendor dependent. Prior to
J2EE, the code for each component was directly linked to a particular
manufacturer. Consequently, changes could not be made in one area with-
out hugely affecting another. Java took vendor dependence out of the
equation. The J2EE model enables you to develop components indepen-
dent of the operating system or server vendor. These components are reus-
able and fully capable of communicating between the specific tier layers.
To ensure success and consistent behavior of the J2EE model, vendors
must provide servers that comply with the associated J2EE Java Applica-
tion Programming Interface (API) specification, and developers must
write components that utilize these same interfaces. Compliance results
in components that are both swappable and reusable among different
J2EE servers.

Figure 1.1 displays the various components that make up the architec-
ture. The acronym

EJB

 stands for

Enterprise Java Bean

. This is a server-
side component that manages business objects, their logic, and interaction
with all storage mechanisms, referred to as

EIS

, or

Enterprise Information
Systems

. The other acronym is JSP, which stands for Java Server Page. Both
JSPs and servlets manage the Presentation layer by interacting with server-
side business logic.

This book focuses on two important object types in this enterprise model:
servlets and Java Server Pages. The first half of the book is based on servlets,
and the second on Java Server Pages (JSPs).

Servlets

 are platform-independent

web components

—elements that
bridge the gap between the Presentation tier and the Business Logic, or EIS
Integration tier. In simple terms, they are Java classes that implement specific
interfaces allowing the container to manage their life cycle and communicate

http://www.sybex.com

4

Chapter 1 �

The Web Client Model

their data to a browser. A

web server

 is an application written by a vendor
that meets the J2EE specification. Within the server exists a

container

. This
is the piece of the server that manages the life cycle and communicates the
data of a servlet or JSP to the browser. Servlets are saved to a container and
loaded dynamically on an as-needed basis to process business logic and gen-
erate a graphical layout for the client. Specifically, servlets are designed to
optimize business logic executed on the server side.

F I G U R E 1 . 1

The J2EE model

Java Server Pages

 are also Java objects used to communicate between the
client and server. They, too, execute business logic; however, processing Java
code is not their specialty. Unlike servlets, JSPs are optimized for the layout.
Their elegance lies within their ability to generate easy-to-read graphical
interface code—while servlets provide the opposite. The servlet priority is to
primarily process a request and then create a response. Figure 1.2 defines the
architecture for the Servlet model.

HT
TP

 re
qu

es
t

HTTP response

Presentation tier Web tier Business tier EIS integration tier

Database

Client

Client

Web server

Servlet

Servlet

JSP

Web server

Servlet

JSP

JSP

Web server

Servlet

Servlet

JSP

JSP

Application server

EJB

EJB

EJB

Application server

EJB

EJB

EJB

Application server

EJB

EJB

EJB

http://www.sybex.com

HTML

5

F I G U R E 1 . 2

The Servlet model

The

Servlet model

, in its simplest form, defines a transaction in four steps.
The user begins by making a

request

,

an object containing client intent and
data. The request is first sent to the web sever. The server then invokes the
appropriate servlet in step 2. After the servlet receives and processes the request,
it then generates a

response

,

an

object containing the information requested
by the client. This response is sent back to the web server in step 3. As the
intermediary, the web server completes the final step by sending the response
back to the client for an update to the interface.

This book provides a detailed look at each topic to help you understand
the rules and information necessary to pass the Sun Certified Web Compo-
nent Developer for J2EE Platform certification exam. In the following
“HTML” section, our focus begins by looking at the technologies necessary
to enable the client to communicate with the web server, or more specifically,
the servlet. The process starts with the client accessing the server via their
web browser, which reads HTML.

HTML

T

he

Hypertext Markup Language (HTML)

 is the intermediary lan-
guage between the browser/client and all other technologies, such as Java
or networking protocols. Before learning how the information is trans-
ferred and how or what the servlet or JSP does with this information, you
need to understand all the rules associated to the first layer—the web
interface.

A large portion of client and server interaction is done by using HTML
forms. A form usually contains one or more HTML tag components. These

Web server

Servlet

Browser

Request

Response

3

4

1

2

http://www.sybex.com

6

Chapter 1 �

The Web Client Model

components enable a user to select or enter a item for a particular request.
For example, you might encounter an online order form to access market
information. Each field might represent a filter or characteristic used to
locate the stocks you are looking to learn more about. These specifics
within an HTML form notify the server of your needs. Once triggered, a
request is sent with your criteria. Although the purpose of the book is not
to teach you HTML, it is important you understand forms and their asso-
ciated tags. This next section covers the various HTML tags and their trig-
gers; later we will show you how these forms actually trigger a request to
the server.

HTML Tags

A variety of HTML tags are used to create custom web pages. Some tags
define components used to display data and/or accept input. Other tags are

When to Use HTML

Your company is developing a website that surveys the public’s purchasing
preferences. In designing the project, a decision must be made on how to
develop the most effective front end. Because the application will be accessed
through browsers, your choices consist of HTML or Java.

Java applets are useful when your site is looking to utilize complex graph-
ical user interface (GUI) functionality or render multidimensional images.
They are also used to stream data, such as music or videos, and to display
dynamic data without having to refresh the entire page.

HTML, on the other hand, is best suited for displaying static data, often seen
in news pages or forms. Unlike updating an applet, updating a client HTML
display requires the server to reload the entire page.

When comparing capabilities, Java seems to offer more advantages. For
this site, however, HTML is all that is needed. The site needs to contain
fields of information and choices for the user to select. After the user enters
the necessary data, the site then needs to send all the information to the
server and reload a new or the same page. By using HTML and HTTP, the
site can be developed to be both functional and efficient.

http://www.sybex.com

HTML

7

used for formatting purposes. In this section, we will present the common
tags used to communicate with servlets and JSPs. Their purpose and associ-
ated triggers will be covered as well.

FORM

 Tag

A

form

 is a section of an HTML page that can contain a variety of controls

.

It has two main attribute tags:

ACTION

, which defines location of the request
target, and

METHOD

, which defines the type of request. Contained within the
form are controls. Programmatically they are often referred to as a(n)

INPUT

,

SELECT

, or

TEXTAREA

. Conceptually,

controls

 are GUI components that
enable the user to interact with the interface. Some examples are radio but-
tons, text fields, buttons, and menus. A user modifies these controls by enter-
ing data or selecting available options. In certain cases, a user’s action can
trigger a request to the server. Before you move on to that stage, take a closer
look at the

FORM

 tag and its controls:

<HTML>

 <BODY>

 <FORM ACTION=‘/servlet/example/NameForm’ METHOD=‘POST’>

 <P>First name:

 <INPUT TYPE=‘text’ size=‘20’ NAME=‘first’></P>

 <P>Last name:

 <INPUT TYPE=‘text’ size=‘20’ NAME=‘last’></P>

 <INPUT TYPE=‘submit’ VALUE=‘send’>

 </FORM>

 </BODY>

</HTML>

The following is the resulting image.

http://www.sybex.com

8

Chapter 1 �

The Web Client Model

A form can contain several control types. Some enable a client to commu-
nicate with the server, while others do not. Only components used to acquire
or transfer client information are covered. Labels and images are strictly
visual and will not be addressed. The three main control tags are

INPUT

,

SELECT

, and

TEXTAREA

.

If you do not specify a method type for the

FORM

 tag, the browser will assume the

appropriate method type for you and generate a

GET

 request when triggered.

INPUT

 Tag

The

INPUT

 tag identifies a control and its attributes, both of which should
be included in the form. The most significant attribute is

TYPE

. It identifies
which control should be used. Following is a list of the possible attributes
used in an input tag:

TYPE

specifies the type of control to create. Your choices are the
following:

text|password|hidden|submit|reset|button|checkbox

radio|file|image

NAME

is often the human-language name assigned to the control. It is
also used to identify the element in the servlet.

VALUE

specifies the initial value of the control. It is not a required
attribute for any control.

SIZE

identifies the initial width of the control. In general, the width
is measured in pixels. For

text

 or

password

 controls, size is measured
by characters.

MAXLENGTH

is used for

text and password to specify the maximum
number of characters the user is allowed to enter.

CHECKED is an attribute used for radio or checkbox controls. It’s a
boolean value that identifies whether the control should be selected.

SRC specifies the location of the image control type.

A closer look at each control will reveal how each attribute affects the
INPUT tag.

http://www.sybex.com

HTML 9

INPUT TYPE = 'text'

In an HTML form, the type text creates a text field GUI component that
enables the user to enter a single line of text. Here is an example of the code
and resulting image:

<INPUT TYPE=‘text’ NAME=‘firstName’

 VALUE=‘Enter your name here’ SIZE=‘20’ MAXLENGTH=‘30’>

The NAME is simply a way to identify the data accessed from this control,
while its VALUE pre-fills the text field. If the VALUE attribute is excluded, the
text field would be empty. The visual width or SIZE of this text field is
20 characters wide, yet the user’s name cannot be greater than 30 characters,
given the MAXLENGTH specification.

INPUT TYPE = ‘password’

In an HTML form, the type password creates a password GUI component
that alters the entered characters to hide their true value. Here is an example
of the code and resulting image:

<INPUT TYPE=‘password’ NAME=‘loginPassword’

 VALUE=‘P433w0rd’ SIZE=‘20’ MAXLENGTH=‘20’>

You can define all the same attributes as you can for the text field. The dif-
ference between the two is how the characters appear. Although a password
component conceals the true value from the user’s view, the characters are
not encrypted. When a password is sent to the server, the original characters
are transmitted.

INPUT TYPE = ‘hidden’

In an HTML form, the type hidden creates a control that is not rendered,
but whose values can be transmitted back to the server. Here is an example:

<INPUT TYPE=‘hidden’ NAME=‘taxRate’ VALUE=‘.0725’ >

In general, the NAME is a string whose VALUE remains the same regardless
of user interaction.

http://www.sybex.com

10 Chapter 1 � The Web Client Model

The user cannot directly modify the VALUE of the control. However, the HTML
designer can set up a trigger (JavaScript) to update the control if some pre-
defined action occurs, such as the user selecting a different state.

In our example, this control would be useful on a form that took infor-
mation for an order. After the order was placed, the taxRate value would
be sent to the server. Although this value might not remain constant for an
infinite period, it can be changed by the developer or updated dynamically
without performing any compilations.

INPUT TYPE = ‘submit’

In an HTML form, the type submit creates a submit button GUI component
that triggers an HTTP request to submit a form to the server. There are three
ways to create a submit button. Each procedure has a different effect.

Example 1:

<INPUT TYPE=‘submit’>

The first example creates a default button. Because we do not provide a
VALUE attribute, the label is set to a default string determined by the
browser—for example, “Submit Query” or “Submit.”

Example 2:

<INPUT TYPE=‘submit’ VALUE=‘Place Order’>

By including the VALUE attribute, we can now customize the label on our
submit button, as shown here.

Example 3:

<INPUT TYPE=‘submit’ NAME=‘btnOrder’ VALUE=‘Order’>

The NAME attribute serves two purposes. It gives us a handle to the com-
ponent, and it captures the name/value pair btnOrder=Order to include in
the data being sent to the server via a request object. (We’ll talk more

http://www.sybex.com

HTML 11

about the details in the upcoming “HTTP” section.) The following is the
resulting image.

While other input controls take in data, the submit button actually trig-
gers a request to be sent. As a side note: if you have a form that contains mul-
tiple submit buttons, each button will capture all the data from the controls
defined within the same <FORM></FORM> body tags.

INPUT TYPE = ‘reset’

In an HTML form, the type reset creates a reset button GUI component.
Here is an example of the code and resulting image:

<INPUT TYPE=‘reset’ VALUE=‘RESET’>

The reset button component is designed to set all control types back to
their original values. It does not provide any form data for a request.

INPUT TYPE = ‘button’

In an HTML form, the type button creates a basic button GUI component.
Here is an example of the code and resulting image:

<INPUT TYPE=‘button’ NAME=‘btnOK’ VALUE=‘OK’>

The button component receives events but does not directly trigger a
request. Instead, it is used to extend the HTML functionality. By using
a client-side scripting language, such as JavaScript, you can cause this com-
ponent to trigger other processes to take place.

INPUT TYPE = ‘checkbox’

In an HTML form, the type checkbox creates a check box GUI component.
Here is an example of the code and resulting image:

<INPUT TYPE=‘checkbox’ NAME=‘state’ VALUE=‘CA’

 CHECKED> California

http://www.sybex.com

12 Chapter 1 � The Web Client Model

<INPUT TYPE=‘checkbox’ NAME=‘state’ VALUE=‘TX’> Texas

<INPUT TYPE=‘checkbox’ NAME=‘state’ VALUE=‘AZ’

 CHECKED> Arizona

Placing quotes around the attribute definitions is not mandatory, but it is
considered good programming practice.

The check box component enables the user to select or deselect multiple
items. These components are independent from one another, so selecting one
will not affect another. When the information is ready to be sent to the
server, all selected items will be paired by using their assigned name and
value, and then sent with the request. For example, if a request were trig-
gered and both California and Arizona were selected, the request data would
include state=CA and state=AZ. Notice that we assign the VALUE attribute,
not the label. If none were selected, then the request would not include data
from these controls.

INPUT TYPE = ‘radio’

In an HTML form, the type radio creates a radio button GUI component.
Here is an example of the code and resulting image:

Example 1:

<INPUT TYPE=‘radio’ NAME=‘question’ VALUE=‘Yes’

 CHECKED> Loves me

<INPUT TYPE=‘radio’ NAME=‘question’ VALUE=‘No’>

 Loves me not

<INPUT TYPE=‘radio’ NAME=‘question’ VALUE=‘Confused’>

 Not sure

The radio button component links multiple buttons, but only one can be
selected at a time. All three buttons in the example are joined because they

http://www.sybex.com

HTML 13

share the same NAME attribute of question. This named group represents a
mutually exclusive set of options. If you attempted to make the third option
checked as well, only the last checked control in the group would be selected.
See the following code example and resulting image:

Example 2:

<INPUT TYPE=‘radio’ NAME=‘question’ VALUE=‘Yes’

 CHECKED> Loves me

<INPUT TYPE=‘radio’ NAME=‘question’ VALUE=‘No’>

 Loves me not

<INPUT TYPE=‘radio’ NAME=‘question’ VALUE=‘Confused’

 CHECKED> Not sure

As you can see, the first checked item is ignored and only the last one
selected is marked. Again, if a request were created, this last example would
create a name/value data pair of question=Confused to send to the server.

SELECT Tag

Now that you’ve gone through all the desired INPUT type tags, you are ready
to understand the SELECT tag. It is designed to create a component that enables
the user to select options. You can set it up to allow either single or multiple
selections. Syntactically, SELECT has an open and close tag. Within its body,
you identify the available choices by using the OPTION attribute. We’ll first
show you the code for a single selection control and its resulting image.

Example 1 (single selection):

<SELECT NAME=‘Food Preference’>

 <OPTION VALUE=‘Vegetarian’> Vegetarian

 <OPTION VALUE=‘Kosher’ SELECTED> Kosher

 <OPTION VALUE=‘None’> None

</SELECT>

http://www.sybex.com

14 Chapter 1 � The Web Client Model

By default, the SELECT tag allows only single selection. Marking an option
SELECTED causes that choice to appear highlighted when the image is first
rendered or reset. The NAME attribute is used to create the data name/value
pair to send with a request. In the preceding example, a triggered request
would include Food Preference=Kosher. Next we will show you how to
create a multiple selection control.

Example 2 (multiple selection):

<SELECT NAME=‘Meat’ MULTIPLE>

 <OPTION VALUE=‘Beef’> Beef

 <OPTION VALUE=‘Chicken’ SELECTED> Chicken

 <OPTION VALUE=‘Pork’> Pork

 <OPTION VALUE=‘Fish’ SELECTED> Fish

</SELECT>

Adding the MULTIPLE attribute enables you to select more than one option.
In fact, the control takes on a list-like appearance. Again, a request would pro-
duce name/value pairs for Meat=Chicken and Meat=Fish in this example.

TEXTAREA Tag

A TEXTAREA tag creates a text area GUI component, which enables the user to
enter multiple rows of data. Here is an example of the code and resulting image:

<TEXTAREA NAME=‘message’ ROWS=‘5’ COLS=‘30’>

You can pass the exam if you know all the rules!

Let us help you get there.

</TEXTAREA>

http://www.sybex.com

HTML 15

The text area component is created with a ROWS attribute to identify the
number of visible lines. Without this attribute, the number of rows is set to
a default value determined by the browser.

The COLS attribute identifies the visible number of characters per line
without the use of a scrollbar. Because the letter l has a smaller width than
w, the average width is used to measure a character. If the attribute value
is excluded, the browser will apply a reasonable default column width.

The HTML spec encourages browsers to provide automatic word wrap for this
component. Because word wrap is not mandatory, you can programmatically
enforce this behavior by including the following attribute: WRAP=‘VIRTUAL’.

The controls within a form are used to help the developer gather user data
and send client information to the web server. Next, we’ll discuss how
the information is formatted into a query string in preparation for
transportation.

Query String

With a better understanding of HTML tags, you can start examining elements
more closely associated with the browser. A query string is a URL-encoded
string that contains data stored in name/value pairs.

Say you had an HTML form with the following controls:

<INPUT TYPE=‘text’ NAME=‘firstName’ VALUE=‘Name:’

 SIZE=‘20’>

<INPUT TYPE=‘password’ NAME=‘passwd’ VALUE=‘Password:’

 SIZE=‘20’>

<INPUT TYPE=‘submit’ NAME=‘bttn’ VALUE=‘Send Now’>

Clicking the submit button triggers a request that generates the following
query string:

firstName=Name%3A&passwd=Password%3A&bttn=Send+Now

Here are a few important query string rules to remember:

� Data is transferred in name/value pairs.

� Names and values are URL encoded (hexadecimal ASCII), including
white space, question marks, and all non-alphanumeric values.

http://www.sybex.com

16 Chapter 1 � The Web Client Model

For example, a percent sign (%) would be denoted with the Unicode
value 0025 and displayed as %25.

� Name and value pairs are separated by an ampersand (&).

� Spaces in the name are encoded as a plus sign by the browser, because
URLs cannot contain spaces. The hexadecimal code for a plus sign or
space is %20.

URL

A Uniform Resource Locator (URL) defines the information the client needs
to make a connection to the server. For example:

http://book.com/

or

http://book.com:8080/servlet/Registration?

name=Ariela&address=1234+Happy+Street

The full signature consists of the following:

<protocol>://<servername>[:port]/<url-path>

[?query-string]

The following list is a more detailed breakdown of the various elements
found in a URL and their functions:

Protocol The set of rules used to transmit information. For simple web-
site access, you will most often see HTTP used. However, depending on
what information you are trying to access and how, you might see other
types of protocols such as HTTPS, FTP, or NNTP.

Servername Defines the domain name used for the web server. It usually
ends with a .com, .net, .org, .gov, .edu, .biz, .info, .tv, .ws, .to,
.co, .uk, or something similar.

Port Required only if the default port 80 is not being used. It is a
numeric value (from 0–65,535) designated by the web server for that
particular service.

URL path Defines additional directories to locate the resource.

Query string A URL-encoded string that represents data being sent in an
HTTP request.

http://www.sybex.com

HTTP 17

URI

The Uniform Resource Identifier (URI) is the part of the URL excluding the
domain name and the query string—in other words, all information after
the domain name and before the query string. It specifies the resource.

Given the following address, you can see both the URL and URI:
Request address:

http://java.sun.com/products/servlet/index.html?id=‘09’

URL:

http://java.sun.com/products/servlet/index.html?id=‘09’

URI:

/products/servlet/index.html

HTTP

The success behind client-server architecture is the ability of both
parties to communicate and transfer data over a network. The means of
transmission depends on what is being sent and how you want that infor-
mation delivered. At the lowest level, data is transmitted by using Internet
Protocol (IP). There are two main points you need to know about IP. First,
the packets are a fixed size, and second, you are not guaranteed delivery. If
a packet fails, the protocol will not try to resend the data.

For a more controlled environment, Transmission Control Protocol
(TCP) guarantees that the information will be delivered—and in the order it
was sent, without errors. If a failure occurs, this protocol ensures the sender
that it will make several more attempts at delivery. In addition, the size of the
information being transferred can vary.

The next network layer is one built on top of TCP. Hypertext Transfer
Protocol (HTTP) utilizes TCP, but adds a few more custom features. HTTP
is a stateless protocol—meaning its data is not retained from one request to
the next. After a request is made, the connection is closed. Because clients are
not holding open connections to a server, the server can have more clients
connect over a long period of time.

HTTP is also flexible in that it can transmit any file that conforms to the
Multipurpose Internet Mail Extension (MIME). MIME is an extension of
the e-mail protocol used to allow the exchange of different kinds of data files
over the Internet. HTTP was built in conjunction with HTML to enable

http://www.sybex.com

18 Chapter 1 � The Web Client Model

users to access information through a web browser. Selecting a link or trans-
mitting data from a form will generate an HTTP request to send to a web
server whose address is defined by a URL.

The process to transmit the request is as follows:

1. An HTTP client or web browser makes a connection to a server.

2. The client initiates a request.

3. The server answers and sends a response to the client.

4. The connection is closed.

Figure 1.3 shows how the client makes a request for a GIF file to the server
and the server responds with the appropriate information.

F I G U R E 1 . 3 HTTP request/response communication

As Figure 1.3 illustrates, each response or request is made up of three
parts: the definition line, the header section, and the body.

The Client Request

The client begins by making a connection with the server. Once linked, the
client enters data and/or generates a request for information. If the HTML
form contains data, the name/value pairs will be gathered and included with
the request. The request will then be sent to the server, and the client will wait
for a response. Figure 1.4 shows a sample request broken up by category.

Request

Response

ServerClient

GET /image.gif HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.0 (compatible; Windows NT 5.0)
Host: localhost: 8080
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

HTTP/1.0 200 OK
Date: Mon, 22 Oct 2001 12:12:01
Server: Apache/1.1.1
Content-Type: image/gif
Content-Length: 9487
Last-Modified: Thur, 11 Oct 2001 10:25:30
[data of GIF file]

http://www.sybex.com

HTTP 19

F I G U R E 1 . 4 Categorizing the request

Request Line

The client initiates the transaction by connecting to an HTTP server. This
request for information is sent with a line defining the HTTP method or
action desired, the document address, and the protocol/version. The format
of a request line is as follows:

Method Request-URI Protocol

For example:

GET /index.html HTTP/1.0

Aside from the GET method, there are many other method types, which we
will discuss later, in the “Request Methods” subsection. For now, this line
sends the server the information necessary to know what to do and where to
do it, by using a defined protocol.

Header

The client might send additional information after the request line to help the
server process the request. This information can consist of the host name,
type of browser, language, file formats, and more. The header section
usually contains client configuration details and specifics on the types of
document formats that will be accepted in the response. Header information
is sent line by line by using value pairs consisting of the header name and
associated value. This pattern is very much like a java.util.Map.

Request line GET /image.gif HTTP 1.0

Body name=value&name=value&name=value

Header (entity) Content-Type: application/x-www-form-urlencoded
Content-Length: 23

Header (request) Referer: http://example.com/search.html
User-Agent: Mozilla/4.0 (compatible; Windows NT 5
Host: localhost: 8080
Accept: image/gif, image/x-xbitmap, image/jpeg,
image/pjpeg, */*

Header (general) Connection: Keep-Alive

http://www.sybex.com

20 Chapter 1 � The Web Client Model

The format of a header is as follows:

Keyword: Value

For example:

User-Agent: Mozilla/4.0 (compatible;Windows NT 5.0)

Accept: image/gif, image/jpeg, image/jpeg,

Accept: application/x-comet, application/msword

Accept: application/vnd.ms-excel, */*

application/x-comet, application/msword,

application/vnd.ms-excel, */*

Host: localhost:8080

Accept-Encoding:gzip, deflate

Accept-Language:en-us

Referer: http://localhost:8080/servlets/index.html

Connection: Keep-Alive

Notice that the Accept header can be defined multiple times.

In this example, you can see the first key, User-Agent, identifies infor-
mation about the client browser. The second key defines the type of files the
client will accept, and the third provides more configuration information.
Additional header tags can be utilized. Table 1.1 displays all the possible
header tags for a request.

The header section is optional, but almost always included.

T A B L E 1 . 1 Common Header Tags

Tag

Accept Specifies acceptable media types for the response

Accept-Charset Indicates acceptable character sets for the
response

Accept-Encoding Restricts the content-coding acceptable for the
response

http://www.sybex.com

HTTP 21

Accept-Language Defines all acceptable languages

Age Indicates the age of a response body

Allow Specifies methods that the resource defined by the
URI can respond to

Authorization Requests restricted documents

Cache-Control Describes how proxies should handle requests and
responses

Code Specifies the encoding method for the body data

Content-Base Resolves the relative URLs within the body of the
document being returned

Content-Encoding Identifies the encoding type applied to the body
prior to transmission

Content-Language Identifies the language of the response content

Content-Length Identifies the length of the body measured
in bytes

Content-Location Identifies the actual location of the entity being
returned

Content-MD5 A computing mechanism used to determine
whether the body was modified during
transmission

Content-Type Identifies the type of data being returned

Expires Indicates the date when the response should no
longer be considered valid

From Specifies the client e-mail address

T A B L E 1 . 1 Common Header Tags (continued)

Tag

http://www.sybex.com

22 Chapter 1 � The Web Client Model

Body

When there is a need to send additional information, a blank line is placed
after the last header line, and then data can follow. The data being sent
to the server from the client is usually included in the body when a POST
action is defined.

An empty line is always included to separate the header and body informa-
tion. If a body is not included, an empty line must still be included to signify
the end of the request header.

The Server Response

After a connection is made with the server, the server looks at the first line
to determine whether it can process the request. It then handles the request
internally and generates a response. The response contains information
about the success of the request, header information about the server, and an
actual response, which might be an HTML page, a graphic, or some other
MIME type. Figure 1.5 shows a response broken up by category.

Host Identifies the host and port number the client is
connected to

Last-Modified Shows the date the returned content was last
changed

Location Redirects to a new location

Referrer Indicates the source from which the current
request was generated.

User-Agent Identifies the browser’s signature information

Warning Identifies any additional risks associated with the
response

T A B L E 1 . 1 Common Header Tags (continued)

Tag

http://www.sybex.com

HTTP 23

F I G U R E 1 . 5 Categorizing the response

Status Line

The server responds with a line that identifies the HTTP version it is using. The
server attempts to utilize an HTTP version that most closely resembles that of
the client. In addition, the server will send a status code to indicate the result
of the request and a phrase to describe the code. The format of a status line is
as follows:

Protocol Status Code Description

For example:

HTTP/1.0 200 OK

In this example, a code of 200 means that the request was successful and
that the requested data will be provided after the headers.

Header

The response header is similar to the request header. It contains similar infor-
mation as the header of the client request, except it pertains to the server. It
tells the client about the server’s configuration and data about the response.
For example, it might tell the client what methods are supported, request
authorization, or date information. The format is as follows:

Keyword: Value

For example:

Date: Mon, 22 Oct 2001 12:12:01 GMT

Server: Apache/1.1.1

Status line HTTP/1.0 200 OK

Body <html>
...
<body> Your order has been processed </body>
...
<html>

Header (entity) Content-Type: text/html
Content-Length: 408
Last-Modified: Thur, 11 Oct 2001 10:25:30 GMT

Header (response) Server: Apache/1.1.1

Header (general) Date: Mon, 22 Oct 2001 12:12:01 GMT

http://www.sybex.com

24 Chapter 1 � The Web Client Model

Content-Type: text/html

Content-Length: 408

Last-Modified: Thurs, 11 Oct 2001 10:25:30 GMT

This example responds with the date the response is being sent, the type
of server it was processed on, the format and length of the response, and the
last date the content was modified.

Body

The body consists of the data the client requested. If the Content-Type is
defined as text/html, then an HTML document will be sent in return. If the
Content-Type is image/jpeg, then an image will be returned.

The server returns one response for each request. If a request comes in for
an HTML page with an image, two responses will be sent in parallel. The
browsers usually join the two to make it appear as if only one response
was sent.

Request Methods

When a web server receives a request, it must first determine how to
handle the information it receives. Looking at the request line answers
this question. An HTTP method is the first element included. There are
seven methods: GET, POST, PUT, HEAD, DELETE, OPTIONS, and TRACE. Each
method serves a different purpose and demands a different type of response.
Table 1.2 summarizes these action methods. Then we’ll go over the meth-
ods more thoroughly to ensure that you understand their differences and
functionalities.

T A B L E 1 . 2 Request Method Summary

Action Description

GET Retrieves a resource

POST Transfers client information to the server

http://www.sybex.com

HTTP 25

GET Method

A GET method is a request designed to retrieve static resources such as an
HTML document or an image from a specific location on the server. When
a client defines a GET action, they are most likely asking the server to return
the body of a document identified in the request URI. When sending the
request, the client might send additional information to the server to help
process the request. The information will be transmitted in a query string
attached to the URL.

The advantages of appending a sequence of characters to the URL are that
the page can be bookmarked or e-mailed. Also, the data does not need to be sent
from a form, thus removing one step from the process of retrieving the data.

There are disadvantages to transferring data via the URL as well. First, the
client cannot send a large URL because most servers limit the URL string to
about 240 characters. Second, because a GET request can be bookmarked, it
is considered idempotent, which means the request can be safely repeated
without necessarily consulting the user. Consequently, GET requests should
not be used to cause a change on the server for which the client would be held
responsible. Imagine a client who is ready to place an order at a website that
uses a shopping cart. If the order request was processed by using a GET, then
the order could be placed multiple times, causing several charges to be made
against the client’s payment method. The result could be an overcharged,
irate customer.

PUT Provides a new or replacement document to be stored on
the server

HEAD Retrieves only the header information pertaining to the
requested resource

DELETE Removes a file from a specified URL

OPTIONS Returns the supported HTTP methods of the server

TRACE Returns the entire network route that the request took, from
the client to the server and back

T A B L E 1 . 2 Request Method Summary (continued)

Action Description

http://www.sybex.com

26 Chapter 1 � The Web Client Model

Other types of GETs are as follows:

conditional GET Returns a response only under specified circumstances.
The request message header contains at least one of the following fields:
If-Modified-Since, If-Unmodified-Since, If-Match, If-None-
Match, or If-Range.

partial GET Requests that only part of the entity be transferred. If a
client already holds some of the data, and the data has not changed on the
server, there is no need to retrieve the entity in its entirety. A partial GET
must include a Range header field. This header enables the client to
retrieve a section of data, rather than the entire entity. A partial GET can
be used when an interrupt occurs and the client already has part of the
entity in memory. There is no need to request bytes already received.

A common example of a GET request is made through search engine que-
ries. The user enters the criteria for the information they want to be returned
and then they select Search. In most cases, this triggers a GET request
whereby the criteria is converted to a query string and added to the URL. In
response, the web server will return static pages of related information. Let’s
examine this example in more detail.

Imagine you are accessing a search engine. The focus is set in a text field,
and you are prompted to enter the details of your search. You type in your
specifics and then click the Search button. A simple version of the HTML
code would look like the following:

<HTML>

 <HEAD>

 <TITLE>The Famous Search Engine</title>

 </HEAD>

 <BODY>

 <H1>Just ask…</H1>

 <FORM ACTION=‘/servlet/Search’ METHOD=‘GET’>

 <p>Enter your critera: </P>

 <INPUT TYPE=‘text’ size=‘40’ name=‘criteria’>

 <INPUT TYPE=‘submit’ value=‘Search’> </p>

 </FORM>

 <!-- The page would contain more information -->

 </BODY>

</HTML>

http://www.sybex.com

HTTP 27

If you entered Motorcycle as your criteria and then pressed the Submit
button, the browser would create a GET request that would look similar to
the following code:

GET /servlet/Search HTTP/1.0

User-Agent: Mozilla/4.0 (compatible; Windows NT 5.0)

Host: educationaledge.net

Accept: image/gif, image/x-xbitmap, image/jpeg, */*

criteria=Motorcycle

The data from the form would be converted to a URL-encoded format
and appear in the Address or Location field of your browser, along with
the URL.

After the server receives and processes this request, it would send a
response that resembles the following code:

HTTP/1.0 200 OK

Date: Sun, 16 Sep 2001 17:01:43 GMT

Server: HypoteticalServer/1.0

MIME-version: 1.0

Content-Type: text/html

Last-Modified: Wed, 17 July 2001 12:10:05 GMT

Content-Length: 6790

<HTML>

… <!-- Search results are formatted in the return page -->

</HTML>

After the response is sent, the browser would then display the new page
for the user to view and access.

Although a search engine is a typical example of one use for a GET request,
keep in mind that several other scenarios could prompt such a request. For
example, you could use the GET to request any one of the following
resources:

� A file or image

� Output from another language running on the server

http://www.sybex.com

28 Chapter 1 � The Web Client Model

� Results from a compilation

� Information from another hardware device—for example, a database
query or video footage—accessible by the server.

At this point, we have exhausted all the details associated with the GET
method. You are now ready to learn about the intricacies associated with the
POST method.

POST Method

A POST method is a request designed for posting information to the server.
If a client is looking to place an order or update a database with new infor-
mation, the POST method is the best approach given the way it handles the
data transfer.

Unlike a GET, the POST request transfers its data in the body of the actual
HTTP request—the URL does not change. In fact, the exchange is invisible
to the user. In addition, there are security provisions incorporated by both
the client side and server side. The client’s browser proves to be more secure
because bookmarking or e-mailing the URL does not result in storing or
communicating the data in the HTTP request—because it simply isn’t
present in the URL. On the server’s end, the approach is more secure because
the server’s access log does not record the dynamic data that would be
present when using a POST method. This also means that client actions are
prevented from being repeated without the consent of the user. When trans-
ferring credit card information or updating a database, the POST method is
the perfect solution. It performs the action once, and the information is safer
because it is not displayed in the URL. There is yet one more advantage: the
amount of data that is transferred can be very large, because the size of a
request has no limitation.

There is one disadvantage you face with a POST request: it must be sub-
mitted from a form. Because of the way the data is encoded, a POST request
cannot be transmitted from any other resource.

The next example uses a form to POST a request and generate a result.
Let’s say you access a website that requires you to register your login name
and password. The HTML code would look something like this:

<HTML>

 <HEAD>

 <TITLE>Register NOW!</title>

 </HEAD>

http://www.sybex.com

HTTP 29

 <BODY>

 <FORM ACTION=‘/servlet/Register’ METHOD=‘POST’>

 <p>Enter your login name: </P>

 <INPUT TYPE=‘text’ size=‘20’ name=‘login’>

 <p>Enter your New Password: </P>

 <INPUT TYPE=‘password’ size=‘20’ name=‘password’>

 <p>Re-enter your New Password:</P>

 <INPUT TYPE=‘password’ size=‘20’ name=‘password’>

<INPUT TYPE=‘submit’ value=‘Submit’>

 </FORM>

 </BODY>

</HTML>

If you entered a login name of Delon, a password of ch1pDe3ign3r
(twice), and then hit the Submit button, the browser would generate a POST
request to transfer the information to the server and retrieve the opening
page to this site. The client request might look similar to the following:

POST /servlet/Register HTTP/1.0

User-Agent: Mozilla/4.75[en](Windows NT 5.0; U)

Host: educationaledge.net

Accept: image/gif, image/x-xbitmap, image/jpeg, */*

name=Delon&password=ch1pDe3ign3r&password=ch1pDe3ign3r

The data from the form is converted to the URL-encoded standard and
becomes a part of the entity body. Also, there must be a blank line between
the header data and the body to notify the server to handle information from
each part differently. After the server receives and processes this request, it
might send a response containing the next page or a message:

HTTP/1.0 200 OK

Date: Sat, 18 Mar 2001 13:21:44 GMT

Server: HypoteticalServer/1.0

MIME-Version: 1.0

Content-Type: text/html

Last-Modified: Mon, 10 Mar 2001 11:16:15 GMT

Content-Length: 525

http://www.sybex.com

30 Chapter 1 � The Web Client Model

 <FORM>

 <H1> Press the button below to begin shopping…</H1>

 <INPUT TYPE=‘submit’ value=‘Shop Now’>

 </FORM>

The request/response process would then begin again after the user
selected the Shop Now button.

In general, a POST request provides a safer environment for requests that
require clients to cause changes to a server resource. The need for security
and the size of data being transferred will help define whether you should use
a GET versus a POST request.

PUT Method

The PUT method is the complement to the GET method. Instead of getting
static information, it requests to store static information. A PUT method asks
the server to store the content body to the URI identified in the request line.

For example, imagine you have an HTML editor that you use to create
web pages. You will likely want to use the editor to publish the document to a
defined server. This can be done by using a PUT request. Let’s say you create
a simple HTML page that contains the phrase “United we stand!” The editor
then has to provide a publishing option asking you for the destination of
your transfer and (most likely) some authentication information. After pro-
viding the necessary information, you press a button (for example, an OK
button), which triggers a request. The request might look something like the
following:

PUT /test.html HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/4.75[en](Windows NT 5.0; U)

Host: publish.com

Accept: image/gif, image/x-xbitmap, image/jpeg, */*

Content-Length: 150

<!DOCTYPE HTML PUBLIC “~//W3C//DTD HTML 3.2//EN”>

<HTML>

<BODY>

<P>United we stand!</P>

</BODY>

</HTML>

http://www.sybex.com

HTTP 31

The server will store the entity body in the directory /test.html and
likely respond with the following:

HTTP/1.0 201 Created

Date: Fri, 26 Oct 2001 16:02:15 GMT

Server: HypotheticalServer/1.0

Content-Type: text/html

Content-Length: 50

<H1>The file was created.</H1>

If authentication fails, the server will send a response body to identify
that authentication was denied and the user can try again with the correct
information.

HEAD Method

A HEAD method is a request that is almost exactly like a GET. The only dif-
ference is that a HEAD request does not return the entity body. It returns the
response line and headers only. Usually this type of request is used to verify
a document’s existence or properties. You could send a GET or a HEAD to see
whether a document exists, and if it does not exist, both requests will return
errors. If it does exist, then the response for a HEAD will be much smaller than
that of a GET and consequently save you network bandwidth. The other rea-
son to use HEAD is to learn about the properties of a particular resource.
Remember, the response headers identify the document’s size, type, and
modification time.

Here are some examples of common uses for HEAD requests:

� By identifying the modification time, you can determine whether there
is a need to update a cached version of the resource.

� The document size can let you deal with layout issues before retrieving
the actual document. In fact, if it’s very large, it gives you a chance to
determine an alternate plan instead of waiting for it to be returned and
then trying to figure out what to do about the data.

� The type of document can be essential if you are looking to support or
view only certain kinds.

� The type of server can notify the client of special query features that
might be available to produce a more precise request.

http://www.sybex.com

32 Chapter 1 � The Web Client Model

Do keep in mind that header information from the server is optional.
Client requests shouldn’t rely on non-default data from a specific header.

DELETE Method

The complement to the PUT method is the DELETE method. Whereas PUT
enables you to place a file at a particular URL, the DELETE method enables
you to remove a file from a particular URL.

A client request might read:

DELETE /graphics/badNews.gif HTTP/1.1

A server response might look like the following:

HTTP/1.0 200 OK

Date: Sat, 28 Oct 2001 21:10:05 GMT

Server: MyServer/1.0

Content-Type: text/html

Content-Length: 25

<H1> URL was successfully deleted </H1>

A server will likely ask for authorization before performing such a task,
but if successful, a code of 200 will be returned.

OPTIONS Method

The OPTIONS method is used to return all supported HTTP methods on the
server. It returns an Allow header and acceptable HTTP methods as values.
For example, if the server supports GET, HEAD, TRACE, and OPTIONS, part of
the response will consist of the following:

Allow: GET, HEAD, TRACE, OPTIONS

If you are looking to assess the situation before attempting a call, the
OPTIONS method is a good approach.

TRACE Method

When a request is sent, it passes through a series of proxy servers. During
that journey, there is a chance that some of the headers have been changed.
The TRACE method returns the request header values to the client to deter-
mine whether any changes took place. It is mainly used to help debug and
perform an action similar to a traceroute. A traceroute is Unix command

http://www.sybex.com

Exam Essentials 33

that identifies all the locations or IP addresses that a request has utilized to
get to its target address.

A solid understanding of all the HTTP request methods will help identify
how a request maps to a servlet. In the next chapter, we will discuss the path
of the request and how and what it does in the servlet.

Summary

In this chapter, we covered the details associated with the Servlet model.
Specifically, we discussed:

� An overview of the J2EE model

� HTML form tags

� HTTP requests/responses

� HTTP methods: GET, POST, PUT, HEAD, DELETE, OPTIONS, and TRACE

So far, we have been focusing on the communication between the client,
browser, and server. An HTTP request communicates with the browser and
client, while the HTTP response communicates with the server and browser.
We discussed the details associated with HTML, the language understood by
browsers, and the HTTP protocol used to communicate the client’s wants
and data to the web server. These topics thoroughly covered exam Objec-
tive 1.2 and set us up to cover Objective 1.1. In the next chapter, we will
discuss the path of the request and how it is handled within a servlet.

Exam Essentials

Be able to identify the functionality of the GET, POST, and HEAD methods.
Each method is designed to retrieve information; it is how and what they
retrieve that differentiates one from another. You should know what kind
of information each request retrieves and how the information is
retrieved.

http://www.sybex.com

34 Chapter 1 � The Web Client Model

Be able to identify the benefits associated with choosing to use a GET
request. The GET method places its data in the URL, making it available
for caching or e-mailing. If this data contains sensitive material, using this
method could be a security risk. Because the GET method transfers its data
in its URL, it does make the page easier to access. If used in the right
circumstance, this can be a benefit.

Be able to identify the benefits associated with choosing to use a POST
request. The POST method hides its data in the body of the request. This
makes the page less accessible, which can be a good or bad factor depend-
ing on the task at hand. The POST request is also designed to send an error
if the browser attempts to process the request more than once. This can be
a benefit if you are performing a request by using a transaction that
updates some resource on the server.

Be able to identify the benefits associated with choosing to use a HEAD
versus a GET request. At times you might want to retrieve only the
headers of a request to determine whether the resource exists or to deter-
mine the properties of the resource. In such cases, there is no need to
retrieve the body of the request. Instead, a HEAD request becomes ideal.
It returns only the header information provided by the server. A GET
could accomplish the same tasks, but it would eat up wasted bandwidth.

Be familiar with browser controls and how they operate in relation to the
GET, POST, and HEAD methods. Browsers use HTML to display compo-
nents and capture their data. Each control stores specific data that is
transferred when triggered. The default request of an HTML form is a
GET request. It is often triggered with a submit button (other controls can
trigger requests if customized by using JavaScript). It retrieves informa-
tion but does not make modifications on the server side. A POST, on the
other hand, is also triggered by similar controls, but it can make changes
or process critical information on the server. A POST request is identified
by specifying the METHOD=‘POST’ attribute of the FORM tag. Both requests
can return new HTML pages or new data to be rendered. A HEAD request
simply returns the header information without making modifications to
the current HTML page.

http://www.sybex.com

Key Terms 35

Key Terms

Before you take the exam, be certain you are familiar with the follow-
ing terms:

CHECKED partial GET

conditional GET POST method

container PUT method

controls query string

DELETE method request

Enterprise Information
Systems (EIS)

response

Enterprise Java Bean (EJB) Servlet model

form servlets

GET method SIZE

HEAD method SRC

Hypertext Markup Language
(HTML)

TRACE method

Hypertext Transfer Protocol
(HTTP)

traceroute

idempotent TYPE

Java Server Pages (JSPs) Uniform Resource Identifier (URI)

MAXLENGTH Uniform Resource Locator (URL)

Multipurpose Internet Mail
Extension (MIME)

VALUE

NAME web components

OPTIONS method web server

http://www.sybex.com

36 Chapter 1 � The Web Client Model

Review Questions

1. Which HTTP method is used to store a resource on the server?

A. GET

B. POST

C. PUT

D. STORE

E. HEAD

2. Given the following code, which request method will get invoked?

<HTML>

 <BODY>

 <FORM ACTION=‘/servlet/test’>

 <p>Enter the file you would like to Post:</P>

 <INPUT TYPE=‘text’ size=‘40’ name=‘fileName’>

 <INPUT TYPE=‘submit’ value=‘Done’> </p>

 </FORM>

 </BODY>

</HTML>

A. PUT

B. POST

C. GET

D. HEAD

3. Which of the following query strings is invalid? (Choose all that
apply.)

A. name=Michael&address=1234 Sunset Blvd. #301&state=CA

B. name=Michael&address=1234+Sunset Blvd.+#301&state=CA

C. name=Michael&address=1234+Sunset+Blvd%45+
%23301&state=CA

D. name= Michael&address=1234+Sunset+Blvd.+
%23301&state=CA

http://www.sybex.com

Review Questions 37

4. Which of the following is false?

A. The POST method request includes form data in the body of the
request.

B. The GET method includes form data in the URL when processing a
request.

C. The GET method transfers data in a more secure fashion.

D. The POST method does not limit the size of data that can be trans-
ferred.

5. Which of the following tags is used to create a drop-down list?

A. <SELECT NAME=‘Choice’ MULTIPLE></SELECT>

B. <INPUT TYPE=‘select’ NAME=‘choice’>

C. <SELECT NAME=‘select’>

D. <SELECT NAME=‘Choice’></SELECT>

6. What character is used to separate the URI and query string in a GET
request?

A. &

B. ?

C. +

D. =

7. Which of the following terms contains a method of intent, header
information, and a body?

A. HTTP request

B. HTTP response

C. HTTP protocol

D. None of the above

http://www.sybex.com

38 Chapter 1 � The Web Client Model

8. Use the following code to answer this question, and assume that the
user enters myPassword in the password control:

<HTML>

 <BODY>

 <FORM ACTION=‘/servlet/test’>

 <p>Enter your password:</P>

 <INPUT TYPE=‘password’ size=‘20’ name=‘passwd’>

 <INPUT TYPE=‘submit’ value=‘Done’> </p>

 </FORM>

 </BODY>

</HTML>

Which of the following name/value pairs will be included in the
request submitted for the code?

A. password=myPassword

B. passwd=**********

C. passwd=myPassword

D. password=**********

9. Which of the following tasks should not be performed by using a GET
request? (Choose all that apply.)

A. Updating a database

B. Retrieving an image

C. Accessing a website

D. Sending credit card information

10. Which of the following HTML controls causes a request to be
spawned when activated?

A. Input type=‘submit’

B. Input type=‘text’

C. Input type=‘radio’

D. Input type=‘password’

http://www.sybex.com

Review Questions 39

11. Which of the following request header tags is inaccurate?

A. User-Agent: Mozilla/4.0 (compatible; Windows NT 5.0)

Accept: image/gif, image/jpeg, image/jpeg,

Accept: application/x-comet, application/msword

Accept: application/vnd.ms-excel, */*

Host: localhost:8080

B. User-Agent: Mozilla/4.0 (compatible; Windows NT 5.0)

Accept: image/gif, image/jpeg, image/jpeg,

Host: localhost:8080

C. User-Agent: Mozilla/4.0 (compatible; Windows NT 5.0)

Accept: image/gif, image/jpeg, image/jpeg,

application/vnd.ms-excel, */*

Content-Type: text/html

Host: localhost:8080

D. None of the above

12. Which of the following is not a valid option for a GET request?

A. To get a file or image

B. To get results from a compilation

C. To get information from another hardware device

D. To get output from another program running on the server

E. None of the above

13. How can you include a literal percent sign (%) within a query string?

A. %

B. 0025

C. %25

D. +

http://www.sybex.com

40 Chapter 1 � The Web Client Model

14. Which of the following elements is not included in a URL?

A. Protocol

B. Servername

C. Query string

D. Client IP

15. Which of the following is a valid input type?

A. SRC

B. hidden

C. SIZE

D. FORM

http://www.sybex.com

Answers to Review Questions 41

Answers to Review Questions

1. C. A PUT method request is used to replace or store files on the server.
The request URI identifies the location for the server to store the
resource.

2. C. If a method is not specified in a form, the browser will assign the
GET method to the request by default.

3. A, B, D. A query string must conform to the URL-encoded standard
defined by RFC 1738. Characters that are not-alphanumeric are rep-
resented in a hexadecimal format (%XX). The first option is invalid
because of the included spaces between Sunset and Blvd., and
between “.” and “#”. Using those symbols is illegal as well. The second
option fails for similar reasons, and the last option is invalid because
of the space placed before the name Michael.

4. C. Because the GET method transfers data via the URL, its data can be
bookmarked and saved for later use. This is far from secure. In addi-
tion, the data can be cached and processed multiple times without the
client’s approval. Again, these are features that are not secure if you
are communicating sensitive data.

5. D. The SELECT tag is used to create a control that enables the user to
select an option from a drop-down list. If you include the MULTIPLE
attribute, the control will look like a list, not a drop-down. Single
selection is the default. Finally, the SELECT tag requires a closing tag,
leaving the last option as the only correct response.

6. B. The ampersand (&) is used to separate name/value pairs from one
another. The plus sign (+) is used to fill blank space. The equal sign (=)
is used to separate the name and value. This leaves the correct answer
of a question mark (?). It is used to identify the beginning of the query
string.

7. A. An HTTP request begins with a request line, which defines the
action that is being desired by the server. It can then contain a header
and body.

8. C. Visually, the password control alters the characters so they are not
comprehensible. When they are sent, however, they appear in their
normal text format.

http://www.sybex.com

42 Chapter 1 � The Web Client Model

9. A, D. The GET method should not be used to make any modifications
to the server (such as updating a database) or to send sensitive infor-
mation (such as a credit card number). Because the information is
present in the URL, this is extremely unsafe. In addition, the URL can
be bookmarked and the request can be triggered multiple times with-
out the knowledge of the client. Consequently, a GET request should
not be used to perform transactions that would have negative effects
if executed multiple times.

10. A. A submit button generates a request from an HTML form. The
other controls provide name/value data pairs to accompany the
request.

11. C. The Content-Type header tag is used to identify the type of data
being returned. The first option is valid because multiple Accept tags
are acceptable. You might think the third option is questionable
due the hard carriage return within the Accept declaration; how-
ever, the header request is valid. A hard carriage return is legal when
listing header data.

12. E. A GET request is used to get information from the server. All four
options are valid types of data for a client to request via a call to GET.

13. C. Literal symbols within a query string are denoted by using its
Unicode value. The value is displayed by using the following notation:
%XX. The final answer is invalid because a plus sign is used to represent
a blank space.

14. D. A URL contains all resources necessary to locate and communi-
cate with its target source. The protocol defines the rules used to trans-
mit information, while the servername is the domain name used for
the server. Finally, the query string is the data transferred from the
client to the server. A port can also be defined if the default 80 is not
being used.

15. B. The element SRC is an input attribute used to specify the location
of the image control type. The SIZE element is also an input attribute.
Its purpose is to identify the initial width of the control. The last option,
FORM, is a tag used encompass a variety of controls. The correct input
type is hidden. These are controls that are not rendered, but whose
values can be transmitted back to the server.

http://www.sybex.com

Chapter

2

The Servlet Model

THE FOLLOWING SUN CERTIFIED WEB
COMPONENT DEVELOPER FOR J2EE
PLATFORM EXAM OBJECTIVES COVERED
IN THIS CHAPTER:

�

1.1 For each of the HTTP methods,

GET

,

POST

, and

PUT

, identify

the corresponding method in the

HttpServlet

 class.

�

1.3 For each of the following operations, identify the interface

and method name that should be used:

�

Retrieve HTML form parameters from the request
�

Retrieve a servlet initialization parameter
�

Retrieve HTTP request header information
�

Set an HTTP response header; set the content type of the
response

�

Acquire a text stream for the response
�

Acquire a binary stream for the response
�

Redirect an HTTP request to another URL

�

1.4 Identify the interface and method to access values and

resources and to set object attributes within the following three

web scopes:

�

Request
�

Session
�

Context

�

1.5 Given a life-cycle method:

init

,

service

, or

destroy

, identify

correct statements about its purpose or about how and when

it is invoked.

�

1.6 Use a

RequestDispatcher

 to include or forward to a web

resource.

http://www.sybex.com

N

ow that you have a basic understanding of HTML triggers,
the HTTP protocol, and servlet basics, the goal of this chapter is to give you
a solid understanding of all the details associated with the objectives outlined
for the Servlet model. So, in the following sections of this chapter, we will
map the HTTP method directly to its servlet counterpart method and
address the details associated with each method. The methods themselves
rely heavily on the request and response objects passed in as arguments; con-
sequently, we will show you how to extract information from the request
and how to construct a suitable response.

After covering the request object in great detail, we will address the servlet
life cycle handled by the container: its birth, though the

init()

 method,
its life, through the

service(…)

 and

do

XXX

(

…

)

 methods, and its death,
through its

destroy()

 method. Although this could conclude our discussion
on the Servlet model, there is still one more possible action that can take
place during the life of the servlet. Sometimes a servlet passes its request and
response objects to another servlet to process. The

RequestDispatcher

interface provides two methods,

include(…)

 and

forward(…)

, that make
this action possible.

The Servlet Methods

T

he

Servlet model

 is designed to allow small reusable server programs
the ability to process a variety of requests from a client and then return a
response efficiently. Depending on the HTTP request sent to the client, a spe-
cific servlet method will be assigned to handle the response. In this section,
we will discuss the list of possible servlet methods that the container will
invoke to handle an incoming request.

Until now, we have addressed how HTML tags use the HTTP protocol
methods to send requests. Remember, a

request

 is an object containing the

http://www.sybex.com

The Servlet Methods

45

client’s intent, header information, and possible parameters. We haven’t
discussed how the HTTP protocol methods communicate with the servlet.
Now, we will identify the specific mappings between HTTP methods and
those in the

HttpServlet

 class.
After a request is sent to a web server, the request line is parsed to deter-

mine the desired action. The HTTP method is then mapped to the associated
servlet method. Because all HTTP servlets must extend the

HttpServlet

class, the servlets are guaranteed to have the appropriate method for the
HTTP action. The Java Servlet Specification 2.3 states the following:

�

GET

 requests are handled with a

doGet(…)

 servlet method.

�

POST

 requests are handled with a

doPost(…)

 servlet method.

�

PUT

 requests are handled with a

doPut(…)

 servlet method.

�

HEAD

 requests are handled with a

doHead(…)

 servlet method.

First we’ll present the commonalities among all the

do

XXX

 methods, and
then we’ll detail each one separately.

doXXX (…)

All corresponding

HttpServlet

 request methods (

do

XXX

) share the same
signatures, parameters, and error handling. All methods behave similarly.
They each take a request, process information, and return a response. As a
result, the structure for these methods is similar; they take in the same
parameters and throw the same exceptions.

Method Signature

As we have just stated, the structure for the

HttpServlet

 request methods
is standard. Each method is

protected

, meaning only classes within the
same package or subclasses can access these methods. In addition, when they
are overridden in your servlet, you can make them either protected or public.
The return value is void because the response is sent by the container. A
request and response object are provided via the parameters, and both the

ServletException

 and

IOException

 are thrown in the event of
transmission or streaming errors:

protected void doXXX(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException

http://www.sybex.com

46

Chapter 2 �

The Servlet Model

Parameters

By using the parameters passed in, you can access and create the necessary
information to complete the requested task.

HttpServletRequest

req

provides you a handle to the original request. By using this object, you get
HTML parameters, header data, the method type, and date information.

HttpServletResponse

resp

 provides you a handle to construct a response.
Remember, a

response

 is an object that often contains header information
and a possible body for the client to display.

Error Handler

Whenever information is transferred from point A to point B, a myriad
of potential problems can occur. Sometimes those problems are a result of
the network, which arise due to failures in the source or target system at
runtime. Other times the problem is in the request or response object itself.
The following list identifies the potential problems that can take place:

� If a content header cannot be handled, the container should issue
an error message (HTTP 501 - Not Implemented) and discard the
request. 5xx error codes are usually reserved for server errors, and 3xx
and 4xx error codes are reserved for application or container errors.

� If the request sent is incorrectly formatted, the doXXX(…) method
will ignore any logic included in the method and simply return an
HTTP 400 - Bad Request error message.

� If an input or output error is detected when the servlet handles the
HTTP request, a java.io.IOException is thrown.

� If the HTTP request cannot be processed, a ServletException is
thrown.

doGet (…)

The server indirectly calls the doGet(…) method when a GET request is sent.
By overriding the HttpServlet’s doGet(…) method in your servlet, you
get a handle to the request to retrieve information about the call and then
generate a response to return. The code for this signature is as follows:

protected void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException

http://www.sybex.com

The Servlet Methods 47

Like the GET action, the doGet(…) method is used to retrieve data. It is
different in that instead of requesting the data, it actually performs the func-
tionality necessary to get the data. It also is capable of sending a response
back to the receiver.

The GET method should be based on the following components:

Safe This implies that the user cannot be held accountable for any side
effects. For example, querying data has no side effects, whereas changing
data does.

Idempotent This means that the request can be safely repeated. Again,
making a query is both safe and idempotent; buying a product online is
not safe or idempotent.

A doGet(…) method is generally coded by using the following steps:

1. Reads the request data

2. Writes the response headers

3. Gets the response’s writer or output stream object

4. Writes the response data

Before writing the response data, it is considered good practice to set the
content type of the response to identify its format. For example, you could
set it to text/html if the response output is written by using HTML tags, or
text/plain if it’s just simple text strings. This is especially important when
using a PrintWriter object to return a response. In fact, setting the content
type should be done before accessing the PrintWriter object. The container
will write the headers before the body of the response is committed. Conse-
quently, if you plan to modify the header information, it should be done
prior to flushing a response body.

Another practice that is encouraged is to set the Content-Length header
by using the request object to notify the container of the document size. This
information enables the servlet container to use a persistent connection to
return the response, which improves performance. By default, a container
will set a response buffer size. If the content length fits inside that response
buffer, then the container automatically sets its content length.

These issues aside, the doGet(…) is the best place to include logic for
retrieving safe and idempotent requests. For tasks that don’t require these
precautions, but also request data, the doPost(…) is more suitable.

http://www.sybex.com

48 Chapter 2 � The Servlet Model

doPost (…)

The server indirectly calls the doPost(…) method when a POST request is
sent. By overriding the HttpServlet’s doPost(…) method in your servlet,
you get a handle to the request to retrieve, update, or alter information and
then generate a response to return to the client. The benefit of the POST
action is that it enables the client to send one request with an unlimited
amount of data to the web server. Data is more protected when using a POST
(as opposed to a GET request), because it isn’t blatantly visible or automati-
cally cached. Processing credit card information is the prime example of
when to use a POST request, which calls the doPost(…).

The code for this signature is written as follows:

protected void doPost(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException

As for style, the doPost(…) is coded in a similar fashion to the doGet(…).
It gets the request information, processes the data, and generates a response.
In addition, the rules associated to constructing the response are the same.

The doPost(…) method is different from the doGet(…) in that it does not
need to be safe or idempotent. In fact, most POST requests do have side
effects, and the user should be held accountable. Let’s say your user is pur-
chasing stocks. That order should be processed in a doPost(…) method. This
type of request is designed to prevent the user from repeating the same action
because doing so could have such serious side effects.

In summary, the doGet(…) is the best place to include logic for retrieving
safe and idempotent requests. For tasks that don’t require these precautions,
but also request data, the doPost(…) is more suitable.

doPut (…)

The server indirectly calls the doPut(…) method when a PUT request is sent.
Usually a PUT request is made when the client is looking to place a file on the
server. The process is written in the body of the doPut(…) method.

The following is how the code for doPut(…) should be written:

protected void doPut(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException

Like the doPost(…), the doPut(…) does not need to be safe or idempo-
tent. The actions taking place in this method can have side effects that hold

http://www.sybex.com

The Servlet Methods 49

the user accountable. Consequently, it is considered good practice to pro-
tect the URL from errors by saving a copy of the affected URL in a temporary
directory or location.

Like an FTP request, the doPut(…) is effective in processing requests used
to transfer data to a specific location.

doHead (…)

The server indirectly calls the doHead(…) method when a HEAD request is
sent. A HEAD request is used when the client is interested in only the response
header information. Prior to the Java Servlet Specification 2.3, an HTTP
HEAD request called the doGet(…) method. It was designed to process the
entire method but return only the header information from the response. The
current release includes a doHead(…) method in the HttpServlet class for
the developer to override. Now, the doHead(…) method is called without the
need to process a body request.

The following shows how to define a doHead(…) method:

protected void doHead(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException

Like the doGet(…), the doHead(…) should be written to be safe and idem-
potent. That is pretty easy to do because the doHead(…) usually contains
only header information. The servlet specification includes this method to
improve performance. Now, when the respective HEAD method is called, the
headers can be set and the response returned. There is no need to process
information for a body that will not be returned.

The next few methods are not directly mentioned in the objectives, but
they can be potential options for some of the questions. A general under-
standing of these topics will help you find the correct answer during the exam.

doDelete (…)

The server indirectly calls the doDelete(…) method when a DELETE request
is sent. A DELETE request is used to remove a document or web page from
the server.

The method signature for doDelete(…) is as follows:

protected void doDelete(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException

http://www.sybex.com

50 Chapter 2 � The Servlet Model

Like the doPost(…), this method does not need to be either safe or
idempotent. Because the action of deleting can have serious effects, it’s a
procedure that you want the client to be held accountable for taking. For
example, let’s say that another company recently bought your company.
As a result, you need to change the company’s logo to represent a new
image. You could make a request to DELETE the old graphic file and then
make a request to PUT a new image in its place. As a precaution, it is con-
sidered good practice to save a copy of the old image in a backup directory
or location.

doOptions (…)

The server indirectly calls the doOptions(…) method when an OPTIONS
request is sent. An OPTIONS request is used to determine which HTTP
methods the server or servlet supports. The request returns only header
information. Most importantly, it returns a header tag called Allow and
HTTP method values, which represent the doXXX methods available on the
specified servlet.

The method signature for the doOptions(…) method is as follows:

protected void doOptions(HttpServletRequest req,

 HttpServletResponse

 res) throws ServletException, IOException

Let’s say your servlet overrides the doGet(…) and doPost(…) methods.
An OPTIONS request will return the following header:

HTTP/1.0 200 OK

Allow: GET, HEAD, POST, TRACE, OPTIONS

Servlet-Engine: Tomcat Web Server/3.2.3

 (JSP 1.1; Servlet 2.2; Java 1.3; Windows 2000 5.0 x86;

 java.vendor=Sun Microsystems Inc.)

Now, you might be asking yourself why all those methods are available if
you’ve overridden only the doGet(…) and doPost(…) methods. The reason
is that if you override the doGet method, by default, you also inherit the
HEAD and TRACE methods. You don’t have to override the doHead(…) and
doTrace(…) methods, and the default execution will be performed. The
OPTIONS method is available for every servlet, so this cannot be excluded.

There is generally no need to override this method unless the servlet imple-
ments methods beyond those implemented by HTTP 1.1. The default
implementation is almost always sufficient.

http://www.sybex.com

The Request 51

doTrace (…)

The server indirectly calls the doTrace(…) method when a TRACE request is
sent. A TRACE request is used to return the headers sent with the request to
the client. It is usually used to help debug the servlet.

The method signature for the doTrace(…) method is as follows:

protected void doTrace(HttpServletRequest req,

 Httpservletresponse

 res) throws ServletException, IOException

To understand how a trace works, let’s walk through an example. Say you
send out a request that contains the following information:

Request Line:

TRACE /greetings/servlet/Registration HTTP/1.0

The return response might look similar to this code sample:

HTTP/1.0 200 OK

Content-Type: message/http

Content-Length: 48

Servlet-Engine: Tomcat Web Server/3.2.3 (JSP 1.1;

 Servlet 2.2; Java 1.3.0; Windows 2000 5.0 x86;

 java.vendor=Sun Microsystems Inc.)

TRACE /greetings/servlet/Registration HTTP/1.0

The doTrace(…) method provides a trace for the request sent from the
client to the servlet. If the request passes through a proxy, the request might
get modified. The doTrace(…) method can return either the original,
unmodified request or a modified request, if changes were made. As a final
note, there is usually no need to override the doTrace(…) method because
the functionality is already built into the default implementation.

Now that you have looked at each method, it is important to understand
the details associated with the parameters that these methods utilize.

The Request

The request object provides the server with the client data necessary to
process the request. This can include information about the header, client’s
host machine, form data entered by the client, and servlet. As the request

http://www.sybex.com

52 Chapter 2 � The Servlet Model

object travels from client to server, it is wrapped by the ServletRequest
interface to provide basic client information. It is then wrapped again with
the HttpServletRequest interface to provide request information such as
header data, cookies (which we will discuss later in this section), and other
servlet-related items. Figure 2.1 demonstrates the path a request object takes
and how it returns as a response.

F I G U R E 2 . 1 The request/response path

After the request object reaches the service(…) method, it will be passed
to the appropriate HTTP request method. At that point, you can extract
client information by using the request object handle passed to the appropri-
ate HTTP request method. When taking the exam, you should be familiar
with the method signatures, their purposes, and their associated interfaces.
As a developer, knowing these methods will help you create robust servlets
that contain the necessary details to accomplish your task. In this section,
we will discuss the interfaces and methods available to extract and modify
the request object.

ServletRequest and ServletResponse Interface

After the request is sent to the server, it is converted to a ServletRequest
object, which contains the user entered data, or parameters of the request.
The container also creates a corresponding ServletResponse object
to provide the receiver an object to transfer data back to the original
source. These two objects are passed to the Servlet interface method
service(ServletRequest req, ServletResponse res). A servlet can
receive these objects because all servlets must implement an interface that
extends the Servlet interface. Before these objects reach the actual servlet,
they are cast to HttpServletRequest and HttpServletResponse objects,
which include header and date information. Now these objects are ready to
be passed to the service(…) method of the actual servlet object. Figure 2.2
displays the path.

Web server

Servlet
engine

HttpServlet
service(…)

Application logic
and content
generated

HTTP
request

HTTP
response

HTTP
request

HTTP
response

HttpServletRequest

HttpServletResponse

http://www.sybex.com

The Request

53

F I G U R E 2 . 2

The request process

Parameters

The

ServletRequest

 object gives you access to data often used to initialize
a servlet. These methods are as follows:

�

String getParameter(

String name

)

�

Enumeration getParameterNames()

�

String[] getParameterValues(

String name

)

These methods retrieve the values from the names assigned to the controls
added to your HTML page. Look at the following code example:

<HTML>

 <BODY>

 <FORM ACTION=’/servlet/GetData’ METHOD=’GET’>

 <P>Name: <INPUT TYPE=’TEXT’ SIZE=’25’ name=’firstName’>

 <P>Destination:

 <SELECT NAME=’location’></P>

 <OPTION VALUE=’California’>California

Request

MyServlet

Servlet
service(ServletRequest req, ServletResponse resp)

GenericServlet
service(ServletRequest req, ServletResponse resp)

HttpServlet
service(HttpServletRequest req, HttpServletResponse resp)

http://www.sybex.com

54 Chapter 2 � The Servlet Model

 <OPTION VALUE=’Washington’>Washington

 <OPTION VALUE=’New York’>New York

 <OPTION VALUE=’Florida’>Florida

 </SELECT> </P>

 <P><INPUT TYPE=’submit’ VALUE=’GO!’></P>

 </FORM>

 </BODY>

</HTML>

Listing 2.1 shows how a servlet can retrieve the values of these controls by
using the getParameter(…) method.

Listing 2.1: Using the getParameter(…) Method

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class GetData extends HttpServlet {

 protected void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 String enteredName = req.getParameter("firstName");

 Enumeration ctrlNames = req.getParameterNames();

 String[] states = req.getParameterValues("location");

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML>");

 out.println("<BODY>");

 out.println("<P>Name entered: " + enteredName + "</P>");

 out.println("<P>Control Names are:
");

 while(ctrlNames.hasMoreElements()) {

 out.println((String)ctrlNames.nextElement() + "
");

 }

http://www.sybex.com

The Request 55

 out.println("</P><P>The values selected are: ");

 for (int i=0; i<states.length;i++) {

 out.println(states[i] + "
");

 }

 out.println("</P></BODY>");

 out.println("</HTML>");

 out.close();

 }

}

Within the service(…) method, you use the request object to retrieve the
parameter names and values entered into the HTML form. When you run
this servlet, you begin by accessing the following graphic.

After you enter values into the form and select the GO! button, a request
is generated. This request is sent to the servlet and passes through the
service(…) method. You first get the value (Arti Krause) entered into
the control called firstName. You then get the names of all the controls
in the request: location, button, firstName. Finally, you get the selected
parameter (California) for the control named location. Because the
HttpServletRequest has header information, it is aware that the action
defined by the form was a GET request. Consequently, the doGet(…)
method is called next, after the service(…) method, and the following
output is generated.

http://www.sybex.com

56 Chapter 2 � The Servlet Model

Within the doGet(…) method, the information is formatted and placed
inside HTML tags, and into an OutputStream or PrintWriter extracted
from the response. This response is then sent back to the browser to render
the information.

The ServletResponse object provides methods that help you construct
a response. These methods are as follows:

void setContentType(String type)

Before sending response information, you must notify the receiving applica-
tion of the content type so it knows how to handle the response data. Because
you are transmitting HTML text and the type is formatted as a MIME exten-
sion type, you set the content to text/html rather than just html.

The second step in developing a response is to extract a suitable stream to
transfer the information:

OutputStream getOutputStream()

This method provides a binary stream that enables you to transfer the
data by using bytes.

Another approach is to transfer the data in character or Unicode format.
A PrintWriter stream is used to write text:

PrintWriter getWriter()

While the servlet can extract the values from an HTML page by using the
ServletRequest object, this object also enables the developer to set
attributes for the request.

Attributes

An attribute is a name/value pair associated to a request. Either the container
or developer of a servlet can set attributes. This action becomes useful when
a servlet needs to communicate with another servlet. These attributes are
available through the following methods:

� Object getAttribute(String name)

� Enumeration getAttributeNames()

� void setAttribute(String key, Object value)

Setting the attribute is similar to adding a value to a java.util.Map
object. You define the key, a String, and then the associated object. In a
later part of this chapter, we will cover request dispatching, where a servlet
passes on part of the response development to another servlet. Before a

http://www.sybex.com

The Request 57

request is dispatched to another servlet, the current servlet might want to
pass along the request, a graphic image, a file, or just a value. This can be
done by using the setAttribute(…) method. The receiving servlet can then
access these values by calling getAttribute(…) and passing in the key
name. If the key names are not known, the target servlet can get all names by
using getAttributeName(…), and then extract the values by using the keys
returned to request the specific value.

In an attempt to ensure a standard among vendors, the specification
requires each container to predefine six attribute values when a request is
generated. By using the key names defined in Table 2.1, you can access the
request value assigned to each attribute.

If you intend to forward the request to another servlet, you might want
to change the value associated with a particular attribute. By using the
setAttribute(…), you can accomplish this task by passing in the request
attribute name and the new value.

In addition to attributes, the ServletRequest class is also used to acquire
the originating locale of a servlet.

Internationalization

A locale identifies the country and language codes used by a system or server.
When developing a servlet, you should consider the likelihood of some-
one else accessing your website from another country. If your site handles

T A B L E 2 . 1 Predefined Request Attributes

Request Attribute Type

javax.servlet.error.status_code java.lang.Integer

javax.servlet.error.exception_type java.lang.Class

javax.servlet.error.message java.lang.String

javax.servlet.error.exception java.lang.Throwable

javax.servlet.error.request.uri java.lang.String

javax.servlet.error.servlet_name java.lang.String

http://www.sybex.com

58 Chapter 2 � The Servlet Model

internationalization, the servlet could request the locale and generate a
response based on the location of the originating client. The following two
methods become useful for such a scenario:

� Locale getLocale()

� Enumeration getLocales()

The getLocale() method returns the preferred locale, also known as the
Accept-Language header, that the client will accept. If the client fails to
provide a header defining its locale, the method returns the default locale for
the server.

Some systems might provide a list of acceptable locale headers. The
getLocales() method returns all Accept-Language headers defined by
the client in decreasing order. It starts with the most preferred locale and
then lists the second preferred locale. As with the getLocale() method, if the
client fails to provide a header, the server’s default locale is returned instead.

Another option is to set the locale through the ServletResponse object.
Syntactically, the method is as follows:

void setLocale(java.util.Locale loc)

The method changes the header value based on the java.util.Locale
object passed as a parameter.

Besides customizing a response to meet the language needs of the client,
your application may need to receive client information written in a different
format. A ServletRequest object enables data encoding to help with this
type of situation.

Data Encoding

When streaming information, you cannot be guaranteed that the data is
coming from an International Organization for Standardization (ISO) Latin
alphabet. The character encoding value associated to a stream identifies how
the characters are converted between raw 8-bit bytes and 16-bit Unicode
characters. To read a request coming from a website that uses a different
encoding mechanism requires that you change the character encoding value
to a standard understood by the receiving system. Accessing and modifying
these values can be done with the following methods:

� void setCharacterEncoding(String env)

� String getCharacterEncoding()

http://www.sybex.com

The Request 59

The setCharacterEncoding(…) method overrides the assigned
encoding value to enable the servlet to read parameters or input from
the request. The method does throw a runtime exception called java.io
.UnsupportedEncodingException if the encoding mechanism is not valid.

Keep in mind that this method must be called before any inquires on the
request are made.

The getCharacterEncoding() method is somewhat self-explanatory. It
returns the name of the encoding value used by the request. If the request
does not specify a name, the method returns null.

At this point, we have covered the important methods of the
ServletRequest object. We are now ready to analyze the methods
in its subclass, HttpServletRequest. When the container casts the
ServletRequest and ServletResponse objects to HttpServletRequest
and HttpServletResponse objects, respectively, additional functionality and
information becomes available to the servlet. Next, we’ll take a closer look
at these methods.

HttpServletRequest and HTTPServletResponse Interfaces

The HttpServletRequest and HttpServletResponse objects provide
methods that enable the developer to access and modify header and
date information. Because these interfaces extend their respective
ServletRequest or ServletResponse interface, they also have access to
the parameter methods discussed in the previous “Parameters” subsection.

The HttpServletRequest object gives you access to the request header,
date, and method data. These methods are shown in Table 2.2.

T A B L E 2 . 2 Request Methods

Method Description

String
getHeader(String name)

Returns the value of the specified header.

Enumeration
getHeaders(String
name)

Returns all values of the specified header.

http://www.sybex.com

60 Chapter 2 � The Servlet Model

To really understand the results of these methods, let’s look at an example.
First we’ll show you the request headers sent from the client to the server, then
the results from the servlet. Here is an example of a header request:

GET /Register/index.html HTTP/1.0

Date: Fri, 26 Oct 2001 17:12:10 GMT

User-Agent: Mozilla/4.75[en](Windows NT 5.0; U)

Accept: image/gif, image/x-xbitmap, image/jpeg, */*

Host: educationaledge.net

Accept-Encoding: gzip, deflate

Accept-Language: en-us

Connection: keep-alive

We’ve also included some sample code from a servlet to help you visualize
how and what information is retrieved:

public class HeaderServlet extends HttpServlet {

 protected void service(HttpServletRequest req,

 HttpServletResponse resp)

 throws ServletException, IOException {

Enumeration
getHeaderNames()

Returns all heads names.

int
getIntHeader(String
name)

Returns the value of the specified header as
an int. If the header does not exist, a −1 is
returned. If the value cannot be converted to
an int, a NumberFormatException is thrown.

long
getDateHeader(String
name)

Returns the value of the specified request
header as a long value that represents a Date
object. This method is used with headers that
contain dates, such as Last-Modified.

String getMethod() Returns the HTTP request action name, such
as GET or POST.

T A B L E 2 . 2 Request Methods (continued)

Method Description

http://www.sybex.com

The Request 61

 String acceptValue = req.getHeader("Accept");

 Enumeration allValues = req.getHeaders("Accept");

 Enumeration headerNames = req.getHeaderNames();

 int numbericValue = req.getIntHeader("Max-Forwards");

 long dateValue = req.getDateHeader("Date");

 String method = req.getMethod();

 super.service(req, resp);

 }

 // We’ve excluded the code to process the data so

 // you can focus on the methods and their result.

}

The output generated by each method is described here:

� getHeader(“Accept”) returns image/gif, image/x-xbitmap,
image/jpeg, image/pjpeg, application/x-comet,
application/msword, application/vnd.ms-excel, */*

� getHeaders(“Accept”) returns image/gif, image/x-xbitmap,
image/jpeg, image/pjpeg, application/x-comet,
application/msword, application/vnd.ms-excel, */*

� getHeaderNames() returns all headers:

� Date

� User-Agent

� Accept

� Host

� Accept-Encoding

� Accept-Language

� Connection

� getIntHeader(“Max-Forwards”) returns -1

� getDateHeader(“Date”) returns date in milliseconds since
1/1/70

� getMethod() returns GET

http://www.sybex.com

62 Chapter 2 � The Servlet Model

When more than one element is returned, it is stored in an enumeration.

The HttpServletResponse object provides methods that enable the devel-
oper to modify header information. These methods are listed in Table 2.3.

T A B L E 2 . 3 Response Methods

Method Description

void setHeader(String
name, String value)

Sets the value for a specific header name.

void setIntHeader(String
name, int value)

Sets the integer value for a specific
response header.

void
setDateHeader(String
name, long date)

Sets the date for a specific header. If one
already exists, the new value will replace
the old.

void setStatus(int sc) Sets the return status code when there
is no error. Some examples are SC_OK or
SC_MOVED_TEMPORARILY.

void sendError(int sc) Sends an error response to the client by us-
ing a specified status code. After a call to this
method, the response is considered commit-
ted and should no longer be written to.

void sendError(int sc,
String msg)

Sends an error response to the client by
using the provided status code and a
default HTML-formatted server error page
containing the provided message.

void sendRedirect(String
location) throws
IOException,
IllegalStateException

Sends a temporary redirect response to the
client by using the specified redirect location
URL. The location parameter can be a relative
URL; before sending the response to the
client, the container will convert the relative
URL to an absolute URL. Exceptions: it throws
IllegalStateException if the response was
committed, and it throws IOException if an
input or output exception occurs.

http://www.sybex.com

The Request 63

The following code snippet shows how these methods would be used:

protected void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 response.setContentType("text/html");

 res.setHeader("Server", "The SuperDooper Server/1.0")

 res.setIntHeader("Content-length", 1029)

 res.setDateHeader("Last-modified", 1003947922649);

 res.sendRedirect("http://otherserver.com:8090/index.html");

 …

}

The response header, which would be sent to the URL defined by the
sendRedirect method, would look similar to the following:

HTTP/1.0 200 OK

Date: Sat Oct 17 12:14:15 PDT 2001

Server: The SuperDooper Server/1.0

MIME-version: 1.0

Content-Type: text/html

Last-Modified: Wed Oct 24 11:27:15 PDT 2001

Content-Length: 1029

The status code from the setStatus(…) method is defined in the response
line—200 and OK. This code was set by the servlet handling the redirect. As
you can see, the name of the server can be customized as well as the last date
of modification. The Last-Modified header is now set to the converted
Date value, which is a long representing the number of milliseconds from
January 1, 1970. Finally the Content-Length contains the numeric value we
set by using the setIntHeader method. Basically, the HttpServletResponse
interface provides the developer with methods to tailor and alter the data in
the response headers.

In addition to header information, the HttpServletRequest class also
provides methods to access path elements.

Path Elements

When a client attempts to locate a servlet, it searches through a specific path
to reach its destination. The path itself, or the request URI, is generally
composed of three important sections:

Request URI = contextPath + servletPath + pathInfo

http://www.sybex.com

64 Chapter 2 � The Servlet Model

Context Path

The context path is the first section of the path. It defines the context for
which the servlet resides. Within a single Java Virtual Machine, several web
applications might be running. For each web application, there is one context.
All servlet classes within that web application will share that one context.

Here is the method signature:

public String getContextPath()

The rules for the context path are as follows:

� The path begins with a forward slash (/) but does not end with a for-
ward slash (/).

� The path is an empty string, “”, if the context is at the base of the web
server’s URL namespace.

Servlet Path

The servlet path identifies the mapped directory name associated to the
actual servlet. Usually this consists of either the mapped servlet name or a
mapped path to the servlet, but nothing more.

Here is the method signature:

public String getServletPath()

The rules for the servlet path are as follows:

� The path is an empty string if url-pattern matches a /* pattern.

� The path begins with a forward slash (/) in all other cases.

Path Info

The path info consists of extra path information between the servlet path
and the query string.

Here is the method signature:

public String getPathInfo()

The rule for the path info is as follows:

� If path information does not exist, the method returns a null.

Now that you’ve reviewed these path elements in detail, you can refer to
the following table for a bit more detail. Table 2.4 displays examples of these
three path types, assuming the context is defined as: /games.

http://www.sybex.com

The Request 65

Path Translations

If the developer is interested in accessing file system path information,
they can do so through the ServletContext by using the following
method:

String getRealPath(String path)

The getRealPath(…) takes in a virtual path value and returns its abso-
lute file path on the server. If for example, you passed in index.html, the
return string would represent the entire URL, such as c:\Java\jakarta-
tomcat-4.0\webapps\test\index.html. The format of the URL is depen-
dent on the platform. If a Unix server ran the request, it would format the
root and slashes differently.

The virtual path is basically the URI without the path info or query string.

The other method used to translate virtual paths is available in the
HttpServletRequest class:

String getPathTranslated()

This method takes the path info of the request and computes its real path.
If there is no additional information between the servlet path and the query
string, the method returns a null.

T A B L E 2 . 4 The Request Path Elements

Request Path Path Elements

/games/tictactoe/
welcome.html

Context path: /games
Servlet path: /tictactoe
Path info: /welcome.html

/games/registration/
StartServlet

Context path: /games
Servlet path: /registration/StartServlet
Path info: null

/games/Search/
1234?query=Yamaha+R6

Context path: /games
Servlet path: /Search
Path info: /1234

http://www.sybex.com

66 Chapter 2 � The Servlet Model

Finally, it is important to know that the container cannot translate or get
the real path to a resource that is not directly accessible. For example, the
resource might be located in a database or remote system that is not acces-
sible locally, or an archive file (such as a WAR file). If the container cannot
translate the virtual path, the method returns a null.

Cookies

The final topic of the request object that we will discuss is the cookie. When
accessing web pages, the browser is often sent numerous cookies to accept
and store data. A cookie is a small data object sent to the browser by the
servlet. It is made up of a name, a single value, and optional descriptive
attributes, such as a version number and path information. When the user
opts to accept the cookie, the browser typically saves the object and then
sends the name and value of each cookie during each request. This technique
is used to help manage servlet sessions. We’ll discuss that in more depth in
Chapter 6, “Session Management.” Suffice to say, by using the getCookies()
method of the HttpServletRequest interface, the developer can then
extract the desired cookie attributes.

Cookie[] getCookies()

This method returns an array of all the Cookie objects contained within
the request.

If the developer were then interested in sending a cookie to the browser,
they could do so by calling the addCookie(…) method of the
HttpServletResponse interface.

The Session

Instead of relying on the client to accept cookies and the browser to
cache the information locally, the Servlet model provides a session object as
an alternative solution to maintaining client information past the life of a sin-
gle request. An HttpSession object is created when a client makes its first
request to an application. It provides a way to identify and store informa-
tion about the user for an extended period of time. While a request and its
attributes will cease to exist after its response is sent, a session, once created,
will continue to exist until it either is manually terminated or times out.

http://www.sybex.com

The Session 67

There are several methods that provide information or control over the life
span of an HttpSession object. They include:

� public long getLastAccessedTime()

� public int getMaxInactiveInterval()

� public void setMaxInactiveInterval(int seconds)

� public boolean isNew()

� public void invalidate()

The getLastAccessedTime() method returns the number of milliseconds
since the birth of Unix, January 1, 1970, to the time the client made their
last request. To get the number of seconds the container will allow between
requests to keep the session active, invoke the getMaxInactiveInterval()
method. If you would like to define this value in seconds, simply call the
setMaxInactiveInterval(…) method. The isNew() method is used to
notify the servlet of the client’s session configuration. It returns a true value if
the client does not know about the session or has not joined it yet. Joining a ses-
sion means the client returns session tracking information sent by the server.
If the client, however, refuses to join a session, then a new session is created for
each request. This usually occurs when the web container uses only cookies
for session tracking and the client refuses to accept cookies. The final method
to consider regarding the life of the session is invalidate(). As the name sug-
gests, it is used to manually terminate a session. It first unbinds all associated
attribute objects and then prepares the session for garbage collection.

The attribute objects associated to a session usually consist of client infor-
mation necessary to complete the entire transaction. Imagine a client who
enters their name and address in one screen; then another screen needs that
same information. Instead of repeatedly asking the client for the same infor-
mation for each request made, the client’s name and address can be stored to
the session object and accessed by the servlet without the client. The methods
associated to a session’s attributes are as follows:

� public void setAttribute(String name, Object value)

� public Object getAttribute(String name)

� public Enumeration getAttributeNames()

� public void removeAttribute(String name)

http://www.sybex.com

68 Chapter 2 � The Servlet Model

The method setAttribute(…) binds the defined object to the session.
By using the associated key name, you can retrieve the object with the
getAttribute(…) method. If however, you are looking to acquire
all object names bound to the session, you will need to invoke the
getAttributeNames() method. The enumeration returned can be used
to access all objects via the getAttribute(…) method. In addition to adding
and accessing attributes, you can also remove them. By passing in the
attribute name, the removeAttribute(…) method unbinds the attribute
from the session.

The last session method you should be familiar with is the following:

� public String getId()

This method returns a string containing the unique identifier assigned
to the particular session. One way to use the session ID is for storage of
session information to a persistent data source. This is most useful when
the session is transferred from one web container to another.

Although using sessions might seem as simple as adding and accessing
attributes, there is more to managing them efficiently. Chapter 6, “Session
Management,” discusses the various ways to handle a session and the benefits
from one approach versus another. For now, let’s continue talking about
servlet basics such as its life cycle.

The Servlet Life Cycle

A vendor who intends to provide server support for servlets must
create a server application that adheres to the servlet specification. The
specification calls for the server to maintain a container to specific tasks.
Generally the container is a part of the web server, however, it can be an
external entity. The container is responsible for managing the servlets con-
tained within its environment. This means that the container determines:

� When a servlet is loaded and instantiated

� How to directly handle client requests or dispatch them to another
resource

� When to take a servlet out of service

These stages of the servlet make up the servlet life cycle. Life-cycle
management is a crucial strategy that all containers must implement

http://www.sybex.com

The Servlet Life Cycle 69

successfully to be compliant. The life-cycle methods init(…), service(…),
and destroy() are defined in the javax.servlet.Servlet interface,
which all servlets must implement, either directly or indirectly. In this
section, we will discuss the functionality of these methods and the circum-
stances in which they are affected.

Loading and Instantiating

A servlet can be instantiated when the container starts or when the container
receives a request that needs to be serviced. Before instantiation, the con-
tainer locates all the needed classes for the servlet and uses the standard
ClassLoader to load the servlet class itself. There are no restrictions on
where the files can be loaded—a local or remote file system or another
network altogether is acceptable.

After a servlet is loaded, it is ready to be initialized so the servlet can be
invoked when needed. The servlet is instantiated, and its default constructor
is read. There is no reason to include a non-default constructor within a serv-
let, because it would never get called. This means that passing initialization
parameters to the servlet must be done another way. After the constructor is
read, the container creates an object called the ServletConfig. It contains
name/value parameters defined from within a file (we will discuss the file
later in this section). The ServletConfig object is passed to the Servlet
interface method called:

public void init(ServletConfig config)

 throws ServletException

When this method is called, it actually causes the Servlet’s implementing
class, GenericServlet, to invoke its version of the method. Because the
init(…) method contains some configuration logic that is necessary for the
servlet, it is important that the GenericServlet’s init(ServletConfig
config) method be processed before any other servlet method is called.

Initially, the servlet was designed to have users override the init(…) method
that takes in a ServletConfig object and have the method make a call to
super.init(config). Although this does work if you follow directions, it
doesn’t guarantee that the developer will make the parent call. Consequently,
there is a convenience method provided called init() that takes no argu-
ments. If you override the no-argument init() method, the container will
automatically call the servlet’s init(ServletConfig) method.

http://www.sybex.com

70 Chapter 2 � The Servlet Model

The container will then complete your servlet’s init() method, which
provides the servlet with an opportunity to initialize important resources.

The method within the servlet is as follows:

public void init() throws ServletException

Usually, all activities that are performed only one time during the
life of the servlet are included in this method or the constructor. The
init() method differs from the constructor in one major way: when
the init() method is called, the container passes it a ServletConfig
object. Although the init() method that developers override does not take
in arguments, instead, you can gain access to the ServletConfig handle
via the method getServletConfig(). Most importantly, this object pro-
vides the servlet access to the name/value initialization parameters defined in
the web application’s configuration file, most commonly referred to as the
deployment template descriptor (DTD), or even more commonly as simply
the deployment descriptor. As we will discuss in future chapters, every serv-
let must have an associated DTD file that defines all the characteristics of the
servlet; specifically it identifies servlet classes and any needed initialization
parameter values. It is important to note that not every servlet must have an
associated deployment descriptor. Rather, it is the web application that must
provide a general DTD to describe the various servlets being utilized. Within
this file, it is common to define parameter values that a servlet is likely to
use. Instead of hard-coding that information into the source code, you can
include those values in the web.xml file, which is tied to the web application
or the server’s DTD file. Either will not cause the servlet to be recompiled.
Instead, the container or servlet will need to be restarted.

The following is a section of a sample web.xml file. We will show you
how to define the parameters, and how to retrieve them from the init()
method.

<web-app>

 <servlet>

 <servlet-name>CalendarServlet</servlet-name>

 <servlet-class>CalendarServlet</servlet-class>

 <init-param>

 <param-name>Year</param-name>

 <param-value>2001</param-value>

 </init-param>

 <init-param>

http://www.sybex.com

The Servlet Life Cycle 71

 <param-name>taxrate</param-name>

 <param-value>.0725</param-value>

 </init-param>

 </servlet>

</web-app>

The CalendarServlet has two parameter value sets. The actual source
code can access this information during the initialization phase. Again, let’s
look at a section of code from the servlet:

public class CalendarServlet extends HttpServlet {

 int year;

 double rate;

 public void init() throws ServletException {

 ServletConfig config = getServletConfig();

 String yearParam = config.getInitParameter(“Year”);

 year = Integer.parseInt(yearParam);

 String rateParam = config.getInitParameter(“taxrate”);

 rate = Float.parseFloat(rateParam);

 }

}

By using the getInitParameter() method of the ServletConfig object,
you can access the value of the specified name passed in as an argument.

An additional benefit to the ServletConfig object is that it grants you
access to the following information:

ServletContext By using the getServletContext() method, you
can get a handle to this object, which provides the servlet with the
means to communicate with the container. For example, by using the
ServletContext, the servlet can ask the container to get the MIME type
of a file by using the method getMimeType(String file), dispatch
requests by using the method getRequestDispatcher(String path),
or write to a log file by using the method log(String msg).

Servlet name By using the getServletName() method, you receive the
name of the servlet instance. It is provided by either the deployment
descriptor or its default class name.

http://www.sybex.com

72 Chapter 2 � The Servlet Model

The ServletConfig object is available to the servlet after the init()
method is called. However, several problems can occur within the
init() method that can prevent the servlet from entering service. Here
are three such possible scenarios:

� The first scenario occurs when the init() method throws a
ServletException. This usually happens if there is an initialization
failure—for example, if the container fails to find the initialization
parameters. Failure to initialize would cause the servlet to be released
from the container.

� Another exception that can be thrown is an UnavailableException,
which is a subclass of ServletException. This usually happens
when you are looking to see whether a service is accessible—and
it’s not. If this particular exception is thrown, the container must
wait a minimal time period before attempting to create and initialize
a new instance of the servlet. There is no need to wait if a
ServletException is thrown.

� The final situation occurs when the init() method does not return in
a specified time period defined by the web server. If no problems occur,
the servlet is ready for the next phase of its life cycle: service(…).

The init() method must complete successfully before the servlet can
begin to receive requests. After that state is achieved, the servlet will either
wait for a request to come through, or immediately begin processing any
pending client requests.

Request Handling

After the init() method completes successfully, the service(…) method
is next in line. Most often the container initializes servlets but waits for
requests before activating the servlet. Yes, it is possible for the server to ini-
tialize, invoke, and cache a servlet without a request, but this process is less
common. Usually the container waits to receive a request before doing
anything with the servlet. When a request comes in, it is converted to a
ServletRequest object and passed to the service(…) method of the serv-
let. If the container receives an HTTP request, the object is cast to an
HttpServletRequest object and then passed to the service(…) method.

Here are the method signatures:

protected void service(ServletRequest req,

 ServletResponse res)

 throws ServletException, IOException

http://www.sybex.com

The Servlet Life Cycle 73

or

public void service(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException

The purpose of the service(…) method is to enable the servlet to respond
to a request. If an HTTP request is sent, the service(…) method is respon-
sible for dispatching the request to the appropriate doXXX(…) method.

Because servlets often run in multithreaded containers, developers should
take threading issues into consideration if this method is overridden. It is
quite likely that the same service method will be accessed by multiple
requests. In such cases, it is important to know how the container handles
concurrent access. Does it pool its servlets or does it serialize requests and
have them wait in a queue? From the developer’s standpoint, you can imple-
ment the SingleThreadModel interface or synchronize access to all shared
resources. These topics are covered in great detail in Chapter 8, “Thread-
Safe Servlets.”

The final detail of the service(…) method is its exceptions. Once again,
the ServletException can be thrown if some error occurred while a
request was processed. It is the responsibility of the container to clean up any
partially generated code in such an event. Like the init(…) method, the
service(…) method can also throw an UnavailableException, a subclass
of the ServletException class. This usually occurs if the servlet is tempo-
rarily or permanently unable to handle the request. If the condition is
permanent, the container removes the servlet from service and calls the
destroy() method (which we discuss next) to release the instance. If, how-
ever, the lack of availability is temporary, the container might halt all
requests to that servlet during that temporary period. If a request is refused,
the container will send a response with a Retry-After header and a
SERVICE_UNAVAILABLE(503) status. It is also possible that the container
might treat all unavailability as permanent and remove all servlets from
service when the UnavailableException is thrown.

Completion of the service(…) method results in a call to the servlet’s
appropriate doXXX(…) method. At that point, the servlet can either generate
the response entirely on its own, or pass part or all of the responsibility to
another servlet.

Request Dispatching

A common feature in web applications is the forwarding of a request from
one servlet to another servlet for processing. This process is called request
dispatching. The ServletRequest interface handles this process by providing

http://www.sybex.com

74 Chapter 2 � The Servlet Model

a method that gives access to the RequestDispatcher object. That method
is as follows:

RequestDispatcher getRequestDispatcher(String path)

The argument to the getRequestDispatcher method is a string that
describes the relative or absolute path of the ServletContext for which you
are forwarding the request; basically it’s the receiving servlet’s URI or URL.
As a reminder, the ServletContext is the object used to communicate with
the container.

If accessing the RequestDispatcher through a handle to the
ServletContext object is more feasible, you can use the following method:

RequestDispatcher getNamedDispatcher(String name)

Because there is only one context per web application, there are some
rules about where a request can be dispatched:

� The relative path cannot extend outside the current servlet context. To
do so, you must use the getContext() method. It returns the absolute
URL to the context requested.

� A servlet cannot dispatch a request to a context on another server.

The semantics of the path are as follows:

� If the path begins with a forward slash (/), it is considered relative to
the current context.

� If the path contains a query string, the name/value pairs will be added
to the receiving servlet’s parameter list.

There is also a method for getRequestDispatcher(String) in the
ServletContext interface. It was introduced in the 2.1 API and accepted
only absolute URL paths for the string parameter. Because the
ServletRequest version is more current (API 2.2) and accepts both relative
and absolute paths, it is the preferred choice.

The second method, getNamedDispatcher(String), enables the devel-
oper to get the RequestDispatcher for a resource by specifying its name
rather than path. The name can be accessed in several ways: it can be
hard-coded, in the DTD, or as an attribute of the request. If the name of
the servlet cannot be found, the method returns a null. Here is an example
of how the two methods differ:

//code snippet

public class ServletOne extends HttpServlet {

http://www.sybex.com

The Servlet Life Cycle 75

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 String uri = “/servlet/ServletTwo”;

 RequestDispatcher reqDis1 =

 req.getRequestDispatcher(uri);

 String name = “ServletTwo”;

 RequestDispatcher reqDis2 =

 getServletContext().getNamedDispatcher(name);

 String query = “/servlet/ServletTwo?name=Roney”;

 RequestDispatcher reqDis3 =

 req.getRequestDispatcher(query);

 }

}

The first two examples should return the same dispatcher. The third exam-
ple simply shows how a query string can be attached to the URI. In order for
these parameters to be sent with the request, the forward(ServletRequest
req, ServletResponse res) or include(ServletRequest req,
ServletResponse res) method must be called. If the query is not passed
to the getRequestDispatcher(…) method, it can be acquired from the
original request object and passed via the forward(…) or include(…)
method.

include (…)

When dispatching a request to another resource, the calling servlet might
want to retain control of the response. Here is the method signature:

public void include(ServletRequest req,

 ServletResponse res)

 throws ServletException, IOException

The include(…) method enables the calling servlet to modify the
response object before and after the call to the include(…) method. For
example, let’s take a look at a code sample from a servlet that communicates
magic tricks to its audience:

…

public void doGet(HttpServletRequest req,

 HttpServletResponse res)

http://www.sybex.com

76 Chapter 2 � The Servlet Model

 throws ServletException, IOException {

 res.setContentType(“text/html”);

 PrintWriter out = res.getWriter();

 out.println(“<HTML><TITLE>Welcome to the Magic Show

 </TITLE></HTML>”);

 out.println(“<BODY>”);

 out.println(“Watch the video stream below: “);

 RequestDispatcher disp =

 req.getRequestDispatcher(“/servlet/MagicVideo?video=1”);

 disp.include(req, res);

 out.println(“Tune in daily for a new trick”);

 out.println(“</BODY></HTML>”);

}

…

In this example, the calling servlet simply provides the framework while
the target servlet, MagicTrickVideo, handles the video streaming. The
target servlet cannot change the response status code or set headers;
any attempt to make a change is ignored. The target can, however, process
the request because it does gain access to the request object, via the
getAttribute(…) method. Here are the attributes that a target servlet can
access when invoked through an include(…):

� request_uri

� context_path

� servlet_path

� path_info

� query_string

Unfortunately, these variables are assigned values only if you access the
target servlet by using the request object’s getRequestDispatcher(…)
method. The getNamedDispatcher(…) method leaves these values unset.

If it is necessary for the target servlet to have more control over the
request, the forward(…) method proves to be more useful. The drawback
is that any output from processing of the originating servlet after the
forward(…) method is called is not displayed.

http://www.sybex.com

The Servlet Life Cycle 77

forward (…)

The forward(…) method is used to forward a request to another servlet. The
originating servlet can perform some preliminary functions on the request
and have another servlet generate the response. The act of having another
servlet perform the task is invisible to the client.

Here is the method signature:

public void forward(ServletRequest req,

 ServletResponse res)

 throws ServletException, IOException

Here is an example servlet that calls another servlet to generate a
response:

import java.io*;

import javax.servlet.*;

import javax.servlet.http.*;

public class PassMessageServlet extends HttpServlet {

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 req.setAttribute("message", "Life is good");

 RequestDispatcher disp=

 req.getRequestDispatcher("/servlet/Test");

 disp.forward(req, res);

 }

}

Within the doGet(…), the PassMessageServlet uses the
setAttribute(…) method to store an element called message with a value
of Life is good in the request. It then dispatches this request to a servlet
called Test. Let’s take a look at that code:

import java.io;

import javax.servlet.*;

import javax.servlet.http.*;

public class Test extends HttpServlet {

http://www.sybex.com

78 Chapter 2 � The Servlet Model

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 String theMessage =

 (String)req.getAttribute("message");

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML>");

 out.println("<BODY>" + theMessage

 + "</BODY></HTML>");

 out.close();

 }

}

The output for this example displays the message “Life is good.”
The rules associated to a forward(…) call are as follows:

� The forward(…) method can be called only if output has not been
committed to the client; otherwise, an IllegalStateException is
thrown.

� The calling servlet can set headers and set status code information. But
it must send the same request and response objects to the target.

� If the response buffer contains data that has not been committed, a call
to forward(…) will clear the buffer before calling the service(…)
method of the target servlet.

� The target servlet must send and commit its response before the
forward(…) method can return.

In summary, the forward(…) method passes the response responsibility
to the target servlet. The calling servlet can set attributes and access request
information, but it cannot commit the response. Any response data defined
before or after the forward will be ignored.

End of Service

The container can give life, and it can take it away. The longevity of a
servlet’s life is not defined. The container can keep a servlet alive for a few
milliseconds, or the lifetime of the container. When the time comes to remove

http://www.sybex.com

The Servlet Life Cycle 79

a servlet from service, the container calls the Servlet interface’s destroy()
method. Here is the method signature:

public void destroy()

This method is used to release all resources, such as threads or connec-
tions, and save any persistent data. A container might choose to remove a
servlet before the system is shut down or as a measure to conserve memory
resources. But before the destroy() method can be called, the container
must wait for all threads running in the service(…) method to complete
or time out. After a servlet is destroyed, and its destroy() method has
been called, the servlet is ready for garbage collection. Consequently, the
container cannot send any requests to that servlet. It would need to create
a new instance.

The Exotic Bird Encyclopedia

Exotic Birds, Inc. has a website that provides users with the latest information
on a wide range of bird species. Their website is designed to have the user first
select the type of bird in question, and then to choose the topics of information
they are interested in learning. The site offers information on personalities,
habitat, nutrition, training tips, latest research, and related stories.

Because the application was developed with expandability in mind, a serv-
let for each topic was created. Each servlet retrieves specific information on
its topic from an appropriate database source. The ResearchServlet is a
prime example. In order to present the most accurate and current informa-
tion on research studies, Exotic Birds, Inc. established an agreement with
the National Zoo. Consequently, their ResearchServlet accesses the zoo’s
remote server to acquire its information. A main servlet links these individ-
ual servlets together by using a RequestDispatcher. After the client
determines what information they are interested in, a request is sent to the
server. The main servlet determines what topics are of interest and has
the RequestDispatcher invoke the appropriate servlets to generate and
acquire the information. The main servlet then formats the response page
and returns it to the client. The user can then see all the latest information
to help them learn more about the specific bird they selected.

http://www.sybex.com

80 Chapter 2 � The Servlet Model

Summary

In this chapter, we covered the details associated with the Servlet model.
Specifically we discussed:

� HTTP-to-servlet method mapping: doGet(…), doPost(…), doPut(…),
doHead(…), doDelete(…), doOptions(…), doTrace(…)

� Servlet request and response interface and method associations

� The servlet life cycle: init(), service(…), destroy()

� The include(…) and forward(…) methods of the
RequestDispatcher class.

In this chapter, we took foundation topics developed in Chapter 1 and
connected them to the servlet. We traced the request from the client to the
actual servlet. From the HTML trigger, the HTTP request is sent to the
service(…) method of a servlet. The container either creates a new servlet
for the request or activates an inactive servlet loaded into memory. After the
servlet passes through the service(…) method, its action is determined and
it is then sent to its associated doXXX(…) method. It is this method that pro-
cesses the request or sends the request to another servlet for processing by
using the RequestDispatcher. After the servlet completes its task, a
response might be sent, and the servlet is either destroyed or returned to an
inactive state. The Servlet model effectively connects HTML code to server-
side Java code.

Exam Essentials

Be able to identify the corresponding HttpServlet class methods for
GET, POST, and PUT requests. The HTTP requests are directly mapped
to methods in the HttpServlet class.

A GET request generates a call to the doGet(HttpServletRequest
req, HttpServletResponse res) method.

A POST request generates a call to the doPost(HttpServletRequest
req, HttpServletResponse res) method.

http://www.sybex.com

Exam Essentials 81

A PUT request generates a call to the doPut(HttpServletRequest
req, HttpServletResponse res) method.

Be able to identify the interface and methods used to retrieve the
request’s HTML form parameters, initialization parameters, and header
information. To retrieve HTML form parameters from a request,
the javax.servlet.ServletRequest interface provides the following
methods:

getParameter(String name)

getParameterNames()

getParameterValues(String name)

To retrieve a servlet’s initialization parameters defined within the deploy-
ment descriptor, the javax.servlet.ServletRequest interface
provides the following method:

getParameter(String name)

To retrieve HTTP request header information, the javax.servlet
.http.HttpServletRequest interface provides the following methods:

getHeader(String name)

getHeaderNames()

getHeaders(String name)

getDateHeader(String name)

getIntHeader(String name)

getContentType()

getMethod()

Be able to identify the interface and methods used to set an HTTP response
header and content type. The javax.servlet.HttpServletResponse
interface provides the following methods used to modify the header data:

setHeader(String name, String value)

setIntHeader(String name, int value)

setStatus(int sc)

setDateHeader(String name, long date)

http://www.sybex.com

82 Chapter 2 � The Servlet Model

The javax.servlet.http.ServletResponse interface provides the
following method used to modify the content type:

setContentType(String type)

Be able to identify the interface and methods used to acquire the binary or
text streams. The javax.servlet.ServletResponse interface pro-
vides the getOutputStream() method to acquire a binary stream. The
javax.servlet.ServletResponse interface provides the getWriter()
method to acquire a text stream.

Be able to identify the interface and methods used to redirect an
HTTP request to another URL. The javax.servlet.http
.HttpServletResponse interface provides the sendRedirect(String
location) method.

Be able to identify the interface and methods used to access values and
resources, and set object attributes within a request. There are a variety
of methods defined for a request object in the classes javax.servlet
.ServletRequest and javax.servlet.http.HttpServletRequest.
Earlier, we discussed how to get header, date, and parameter information.
In addition to those methods, you need to be familiar with this list:

The first set of methods is used for getting and setting attributes.
Attributes are data objects that can be associated to a request and
retrieved by using a key.

getAttribute(String name)

getAttributeNames()

setAttribute(String name, Object value)

The next set of methods relates to path information:

getContextPath()

getServletPath()

getPathInfo()

For absolute paths, you can use the following methods:

getRealPath(String path)

getPathTranslated()

http://www.sybex.com

Exam Essentials 83

The following methods help determine regional information of the client
machine:

getLocale()

getLocales()

Finally, it is important to be able to acquire more information from the
client by using the following request method to retrieve cookies:

getCookies()

To add cookies to the response, use:

addCookie(Cookie cookie)

Be able to identify the life-cycle methods of a servlet—which indicate
why, how, and when the servlet is invoked. The servlet container man-
ages the life of the servlets contained within. It is important to understand
when each servlet method is invoked and its purpose. A servlet’s life cycle
methods consist of the following:

init()

service(HttpServletRequest req, HttpServletResponse resp)

doXXX(HttpServletRequest req, HttpServletResponse resp)

destroy()

Be able to identify how the include and forward methods of the
RequestDispatcher work. When there is a need to forward a task to
another servlet for completion, the RequestDispatcher can handle the
job. By acquiring the RequestDispatcher object from the servlet, you
can use two methods to transfer duties: the include(…) method and the
forward(…) method. The choice between the two methods depends
strictly on what you are looking to have done and by whom.

http://www.sybex.com

84 Chapter 2 � The Servlet Model

Key Terms

Before you take the exam, be certain you are familiar with the follow-
ing terms:

attribute request

container request dispatching

content type response

context ServletConfig

context path servlet life cycle

cookie Servlet model

deployment descriptor servlet path

deployment template descriptor
(DTD)

session object

path info

http://www.sybex.com

Review Questions 85

Review Questions

1. Which of the following statements is false? (Choose all that apply.)

A. The doHead(…) method in HttpServlet will execute the doGet
method if the doHead(…) method has not been overridden by the
programmer.

B. There is no doHead(…) method for a HEAD request.

C. A GET request invokes the doHead(…) method and then the
doGet(…) method.

D. A HEAD request will return only the headers as a response.

2. Which of the following options best defines the full signature name for
the servlet method associated with a POST request? (Choose all that
apply.)

A. protected void doPost(HttpServletRequest req,
HttpServletResponse res) throws IOException,
ServletException

B. public void doPost(HttpServletRequest req,
HttpServletResponse res) throws IOException

C. public void doPost(ServletRequest req,
ServletResponse res) throws IOException,
ServletException

D. private void doPost(HttpServletRequest req,
HttpServletResponse res) throws IOException,
ServletException

3. Which HttpServlet method should be used to publish a resource on
the server?

A. doGet(…)

B. doOptions(…)

C. doPost(…)

D. doPut(…)

http://www.sybex.com

86 Chapter 2 � The Servlet Model

4. Which of the following is false?

A. doGet(…) is for handling HTTP GET requests.

B. doPost(…) is for handling HTTP POST requests.

C. doPut(…) is for handling HTTP PUT requests.

D. doHead(…) is for handling HTTP HEAD requests.

E. None of the above.

5. What is the method declaration for the method used in the
HttpServlet class that handles the HTTP POST request?

A. doPost(ServletRequest req, ServletResponse res)

B. servicePost()

C. doPost(HttpServletRequest req,
HttpServletResponse res)

D. service(HttpServletRequest req,
HttpServletResponse res)

6. Given the following request, what result would you expect from the
subsequent method call?

GET /Register/index.html HTTP/1.0

Date: Fri, 26 Oct 2001 17:12:10 GMT

User-Agent: Mozilla/4.75[en](Windows NT 5.0; U)

Accept: image/gif, image/x-xbitmap, image/jpeg, */*

Host: educationaledge.net

Accept-Encoding: gzip, deflate

req.getHeader(“Accept”);

A. A string representing image/gif, image/x-xbitmap,
image/jpeg, */*

B. A string array representing image/gif, image/x-xbitmap,
image/jpeg, */*

C. A string representing image/gif

D. A string representing */*

http://www.sybex.com

Review Questions 87

7. Given a call to the following method, what response would you
expect?

request.getDateHeader(“User-Agent”);

A. An IOException is thrown.

B. A DateFormatException is thrown.

C. An IllegalArgumentException is thrown.

D. A -1 is returned.

8. Which interface gives you access to the getParameterNames()
method? (Choose all that apply.)

A. ServletRequest

B. ServletResponse

C. HttpServletRequest

D. HttpServletResponse

9. Which of the following methods must be both safe and idempotent?
(Choose all that apply.)

A. doGet

B. doHead

C. doPut

D. doPost

10. Given the following code snippet, what output would you expect?

Calling servlet:

public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML>");

 out.println("<BODY>Will you see the source?");

http://www.sybex.com

88 Chapter 2 � The Servlet Model

 out.println("</BODY></HTML>");

 RequestDispatcher disp=

 req.getRequestDispatcher("/servlet/Test");

 disp.forward(req, res);

 out.close();

}

Target servlet:

 protected void doGet(HttpServletRequest request,

 HttpServletResponse response) throws

 ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<HTML><TITLE>The Test</TITLE>");

 out.println("<BODY>Will you see the target?");

 out.println("</BODY></HTML>");

 out.close();

 }

A. “Will you see the source?”

B. “Will you see the target?”

C. An IllegalStateException is thrown.

D. Nothing appears; the thread hangs.

E. Both “Will you see the source?” and “Will you see the target?”
will appear.

11. Which of the following statements is true?

A. If the target servlet does not commit or send its response, the calling
servlet can still continue processing logic after the forward(…) call.

B. Control does not return to the originating servlet after a
forward(…) call is made.

C. A forward(…) call will not continue to process until the target
servlet commits or sends its response.

D. None of the above.

http://www.sybex.com

Review Questions 89

12. Which of the following methods will enable you to get one or more
values set by a request object? (Choose all that apply.)

A. getParameter(String name)

B. getAttribute(String name)

C. getAttributes()

D. getAllAttributes()

E. getAllParamters()

13. Given the following request URI, which option best describes the
context path?

/cars/sportsCars/index.html

A. /cars

B. /cars/sportsCars

C. /sportsCars

D. Not enough information to determine the answer

14. Given the following request URI, where the context path is defined
as /furniture and the servlet is called Search, which option best
describes the result returned from the getPathInfo() method?

/furniture/tables/Search?type=kitchen

A. “”—empty string

B. /Search

C. /Search?type = kitchen

D. null

15. The ServletContext object can be directly accessed from which of
the following objects? (Choose all that apply.)

A. HttpServlet

B. ServletRequest

C. ServletConfig

D. ServletResponse

http://www.sybex.com

90 Chapter 2 � The Servlet Model

Answers to Review Questions

1. B, C. There is a doHead(…) method defined by the servlet spec. In
2.3, it is a protected method, which means you can include the method
in your servlet code if you extend HttpServlet. This would result in
a call to your servlet’s doHead(…) method. The third option is false
because a GET request does not invoke the doHead(…) method; it
invokes the doGet(…) method instead.

2. A, B. The doPost(…) method is defined in the HttpServlet class
with a protected access modifier. When overriding a method, you can
change the modifier to one that is more public. That eliminates the
last option. The third option fails because the parameters passed are
HttpServletRequest and HttpServletResponse. Finally, the first
two answers are correct because you can override a method and throw
fewer exceptions than that of your parent, or you could match the
signature exactly.

3. D. A PUT request is used to publish resources at a location on the
server. This method calls its corresponding doPut(…) method in the
servlet to help perform this task.

4. E. As per the servlet spec 2.3, all methods described handle the
HTTP request methods defined. Consequently, the answer is “None
of the above.”

5. C. The doPost(…) method is called when an HTTP POST is submit-
ted. The two arguments passed in are an HttpServletRequest and
HttpServletResponse.

6. A. The getHeader() method returns a string representation of the
entire value. Consequently, all values are grouped into one string
object. The method getHeaders() parses the values and returns them
in an array.

7. C. If the header value cannot be converted to a date, then an
IllegalArgumentException is thrown.

8. A, C. Because the HttpServletRequest interface extends
ServletRequest, it too has access to the getParameterNames()
method.

http://www.sybex.com

Answers to Review Questions 91

9. A, B. Both the doGet(…) and doHead(…) methods should be written to
be safe, meaning the user should not be held accountable if the request is
processed. They should also be idempotent, which means no negative
side effects should occur if the request is processed multiple times.

10. B. A forward(…) is used to forward responsibility to complete the
response to another servlet. If the calling servlet adds data to the response
buffer, the target servlet erases that information. Consequently, you
see the output from the target response stream only.

11. C. A forward(…) call is a blocking method. This means the target
servlet must commit or send its response before control can be returned
to the forwarding servlet.

12. B, C. The first option fails because getParameter(String name)
returns only a value associated to the parameter name passed. The
getAttribute(…) method takes in a key string and returns a single
value set by a request using the setAttribute(…) method. To retrieve
all attributes in an enumeration, simply call getAttributes().

13. D. The context path defines the path of the context for which the
servlet resides. If the context is defined to be at the base of the web
server’s URL namespace, then the context is an empty string. If that is
the case, then /cars/sportsCars represents the servlet path, and the
context path is blank. If that is not the case, then /cars is the context
path. Because you don’t know where the context was defined, you
have no choice but to select the last option.

14. D. The path info returned is the data between the servlet path and
query string. Because the servlet is called Search and the query string
begins immediately after, the method getPathInfo() returns null.

15. A, C. The ServletConfig interface has a method called
getServletContext() that returns a handle to the ServletContext
object. You can obtain a handle to this object through the HttpServlet
class as well. Its parent class, GenericServlet, also has the same
method defined, getServletContext().

http://www.sybex.com

Chapter

3

Servlet Web
Applications

THE FOLLOWING SUN CERTIFIED WEB
COMPONENT DEVELOPER FOR J2EE
PLATFORM EXAM OBJECTIVES COVERED
IN THIS CHAPTER:

�

2.1 Identify the structure of a web application and web archive

file, the name of the WebApp deployment descriptor, and the

name of the directories where you place the following:

�

The WebApp deployment descriptor
�

The WebApp class files
�

Any auxiliary JAR files

�

2.2 Match the name with a description of purpose or

functionality, for each of the following deployment descriptor

elements:

�

Servlet instance
�

Servlet name
�

Servlet class
�

Initialization parameters
�

URL to named servlet mapping

http://www.sybex.com

I

n order for an application to be accessible by a container, the
many resources that make up the application must be strategically placed in
a predefined directory structure. In this chapter, we will classify the various
parts of a web application and identify where these parts must be placed. The
directory layout is the key behind the container’s ability to locate the data
it needs.

Other configuration information is stored within a file specific to each
web application. The container accesses this file to determine the purpose,
location, and behavior of various resources. We will point out how to format
this file and the tags used to communicate between the web application and
the container.

Understanding a Web Application

I

t takes many pieces to make a final program that is accessible through
the Web. These pieces, when grouped together, are referred to as the

web
application

. A single application can consist of any or all of the following
elements:

�

Servlets

�

JSP pages

�

Utility classes

�

Static documents

�

Client-side Java applets, beans, and classes

�

A standard configuration file (required)

http://www.sybex.com

Understanding a Directory Structure

95

A standard J2EE application can contain many servlets and/or JSP pages.
The utility classes help execute these server programs, and the static docu-
ments provide a more aesthetic appeal to the client application. The client
application might also incorporate other Java classes, such as business
objects, or applets to help deliver the desired program. Finally, all web appli-
cations must contain a standard configuration file to help the server identify
each object’s purpose and structure.

In addition to informing the server about the details associated with each
class, it is imperative that the web application be portable. If the application
is placed on a new or different server, it should execute successfully with
minimal administrative work. You can ensure successful execution by creating
a standard directory structure and configuration file for a web application. All
the server needs to do is use the directory structure to locate the application
classes in their defined directories and then use the web application’s configu-
ration file to identify any configuration settings that need to be applied to
needed resources. The server can then execute the application, and in the end,
portability is achieved.

Understanding a Directory Structure

G

rouping web application classes and files into a structured direc-
tory hierarchy provides the web server with a map to find the appropriate
resource. This hierarchical structure is defined by the servlet specification
but leaves the choice of implementation up to the vendor creating the con-
tainer. While recommended by the specification, it is not required that all
servlet containers adhere to this organizational pattern; however, in order
for the servlet container to be certified by Sun, it must adhere to the servlet
specification. The good news is that most servlet vendors choose to accept
the defined format. More importantly, the exam will test your knowledge
of the standard directory structure. In this section, we will discuss each
layer of the hierarchy and the proper placement of each web application
object.

The hierarchy is made up of three significant layers. The first is the context.
It is one or more directories used to locate the web application associated
to the client request. Within the context exists the

/WEB-INF

 directory,
which marks another layer. It contains several subdirectories that help

http://www.sybex.com

96

Chapter 3 �

Servlet Web Applications

organize class files and compressed Java files. The

/WEB-INF

 directory also
contains a document that maps all files and defines characteristics of the
entire application. This layer is hidden from the client. This means the client
cannot directly access files from within the

/WEB-INF

 directory. The final
layer is quite the opposite. It is located directly within the context and con-
tains all client-viewable files. This includes welcome and error pages, graphic
or audio files, and so forth.

The Context

A single web server can run multiple applications. Each application is usually
contained within a directory called the root, or

context

. For example, you
might have a chat servlet that is made up of multiple directories containing
20 classes and files. All those files and directories will then be placed in one
directory called

/chatApp

. The

/chatApp

 directory is then defined as the
context for this web application. The name of the created directory is arbi-
trary; however, the location of this directory is server dependent. The server
determines how to point to the context.

The Tomcat reference implementation provides an automatic
directory structure, whereby all directories placed inside the

tomcat-installation-directory

/webapps

 directory are automatically
configured as web applications. Now, you are not forced to use this
directory. You can point the context to another location, but that location
must be defined in both the server and application configuration files.
JRun, another web server by Macromedia, allows the developer to define
the context by specifying the directory name or using a GUI wizard tool to
specify the application directory. Basically, the location of the context can
be customized.

The context itself is the root for a single web application.

Table 3.1 lists some context examples.
From this example, you can see that the parent directory can be any direc-

tory, as long as its location is communicated to the server. The context is
a directory defined by the developer, and again, its information must be
mapped to the server.

http://www.sybex.com

Understanding a Directory Structure

97

A container should be configured to reject any attempt to deploy two web

applications with the same context path.

When a request is sent from the client, the container must find the appro-
priate web application to handle the task. In doing so, the web application
finds the longest context path that matches the start of the request URL. The
container then locates the servlet by using the following mapping rules in
the order they are performed.

Assuming that the “servlet path pattern” defines the request URL and the
“incoming path” defines the longest context path match, the servlet container
will try to find:

Exact mapping

All strings match exactly. Here is an example of
a match:

Servlet path pattern:

/foo/bar

Incoming path:

/foo/bar

Path mapping

The string begins with a forward slash (

/

) and ends with
a forward slash and asterisk (

/*

). The longest match determines the servlet
requested.

Here is an example of a match:

Servlet path pattern:

/programs/wordprocessing/*

Incoming path:

/programs/wordprocessing/index.html

Incoming path:

/programs/wordprocessing/wp2.4/start.jsp

T A B L E 3 . 1

Context Examples

Servlet Path Context

ChessServlet

webserver/webapps/chessApp chessApp/

CalculatorServlet

myServlets/calculatorApp calculatorApp/

InstallServlet

/installApp installApp/

MusicServlet

/ /

http://www.sybex.com

98

Chapter 3 �

Servlet Web Applications

Extension mapping

The string begins with an asterisk (

*

).

Here is an example of a match:

Servlet path pattern:

*.jsp

Incoming path:

/catalog/order/start.jsp

Incoming path:

/catalog/form.jsp

Incoming path:

/test.jsp

Default mapping

The container provides server content appropriate
for the resource request, such as a default servlet. The string begins with
a forward slash (

/

), and the servlet path is the requested URI minus the
context path. The path info is

null

.

Here is an example of a match:

Servlet path pattern:

/sport

Incoming path:

/sport/index.html

Containers often have implicit mapping mechanisms built into their systems.
For example, a container might have

*.jsp

 extensions mapped to enable JSP
pages to be executed on demand. The keynote is that explicit mapping by a web

application or servlet takes precedence over implicit mapping.

Request mapping is case sensitive.

WEB-INF

For every web application, there must be a public directory called

/WEB-INF

.
This directory contains the main files for the application that are not pro-
vided to the client by the container. For example, a graphics file would not
be included here because that is something provided to the client. However,
a servlet used to calculate data would be stored somewhere within the

/WEB-INF

 directory structure.
Through the

ServletContext

 object, which the servlet acquires by using
the

getServletContext()

 method, a servlet can access files and code in the

http://www.sybex.com

Understanding a Directory Structure

99

/WEB-INF

 directory by using the following methods:

� URL getResource(String path)

� InputStream getResourceAsStream(String path)

Typically, these methods are used to include the output from other appli-
cation resources into the current application. Either a URL or InputStream
object is returned to the resource mapped in the path parameter. Basically,
if an application developer wants to access another resource without expos-
ing that file to the web client, they can do so by using these methods.

There are three main categories for content in the /WEB-INF directory:

/WEB-INF/web.xml This contains the deployment descriptor.

/WEB-INF/classes This directory contains all the server-side Java
classes, such as servlet and utility classes.

/WEB-INF/lib/*.jar The /lib directory contains all necessary com-
pressed Java files that are used for the web application. These files are
referred to as Java archive files or JAR files. They can consist of servlets,
JSPs, beans, and utility classes.

When loading classes from the /WEB-INF directory, the ClassLoader first
loads from the /classes directory and then the /lib directory.

Web Application Archive File (WAR File)

When distributing a web application, it is convenient to deliver one file
that contains all the necessary classes and resources utilizing the standard
directory structure. A web archive (WAR) file is like a JAR in that it com-
presses all necessary classes and resources recursively in their directories into
a single file. A JAR file is a compressed file used for a standard Java appli-
cation or related classes. A WAR file is a compressed file used for a standard
web application and its related classes. The technique used to create a WAR
file is the same as a JAR. You can create a WAR file by using the following
command-line statement:

jar -cvf ShoppingCart.war *

Or you can extract a WAR file by using the following command:

jar -xvf ShoppingCart.war

http://www.sybex.com

100 Chapter 3 � Servlet Web Applications

Notice that the jar command is used to create and extract a WAR file.
The second argument is a list of options telling the command what to do and
how. Generally, you should be familiar with the basic options available after
the minus sign. They are outlined in Table 3.2.

One of the first three options (c, x, or t) will be used to define the action.
Either you are looking to create (c) a WAR file, extract (x) the contents of the
WAR file, or list the table of contents (t) from a specific WAR file.

The v (verbose) option is usually used to display the output of the
command as it is taking place. The f (file) option denotes that the name
of the WAR or JAR file will be defined in the next section of the command.

For additional options, refer to the following site: %JDK_HOME%/docs/
tooldocs/win32/jar.html or $JDK_HOME\docs\tooldocs\solaris\jar.html
(where %JDK_HOME% and $JDK_HOME represent the path to the JDK installation
directory).

The minus sign in front of the options is not mandatory. It is used only as
a convention carried forward from Unix. The option tags can be placed in
any order.

The third item in the preceding command line is the name of the WAR file.
It should end with a .war extension. Finally, if you are creating a file, the last
item consists of a single directory or multiple directories, separated by
spaces, which will be compressed into the WAR file.

T A B L E 3 . 2 WAR Options

Option Definition

c Create

x Extract

t Table of contents

v Verbose

f Target file

http://www.sybex.com

Understanding a Directory Structure 101

Syntactically, the only difference between the two files types, a JAR and
a WAR, is the extension. So why make two file types? Well, their purposes
are very different. A JAR file is a compressed file containing resources and
classes for a Java application. A WAR file is a compressed file containing
resources and classes for a web application. The distinction is significant, in
that the container is designed to look for different features for a WAR file
than those for a JAR file. In order for a container to execute a WAR file, it
should be placed in the server’s default or configured directory used to hold
all web applications.

Most servers provide a default directory for all WAR file applications. Placing
a WAR file in this directory causes the server to automatically load the appli-
cation into its context. Some vendors provide an additional feature, whereby
they allow the placement of WAR files in another directory outside the default
directory. Restarting the server will result in the loading of all WAR files from
default and configured directories.

Because the WAR file contains all recursive directories needed to use the
web application, starting with the context directory, the WAR file should
placed in the web server’s application root directory—the one preceding
the context.

When developing a web application, creating a WAR file might not be
practical because classes need to be recompiled, reloaded, and tested.
Usually the WAR file is created during the packaging and production
stages of a project.

Client-Viewed Files

All files that the container can send to the client are located in the context or
subdirectories other than the /WEB-INF or /META-INF directories.

The /META-INF directory is the meta information directory and contains, at a
minimum, one file named MANIFEST.MF (the manifest file). The manifest file
contains “meta” information pertinent to the classes that are included within
the WAR/JAR file, such as digital signature information, version control
information, and package sealing information.

http://www.sybex.com

102 Chapter 3 � Servlet Web Applications

Digital signature files are also located in the /META-INF directory, but have the
extension of .sf, which stands for “signature file.”

The default servlet starting page, usually referred to as index.html, is
often located directly in the context directory. It is also common to have a
graphics or images directory, which contains pictured to display on the web
client, within the context directory. Here is a sample directory layout of the
different files contained within a single web application:

webapps/test/index.html

webapps/test/instructions.jsp

webapps/test/comments.jsp

webapps/test/images/logo.gif

webapps/test/images/smileyFace.gif

webapps/test/WEB-INF/lib/testTabular.jar

webapps/test/WEB-INF/classes/com/

 spiderProductions/servlet/TestServlet.class

webapps/test/WEB-INF/classes/com/

 spiderProductions/util/Utilities.class

If you compress the files and directories of the test context into a WAR file
called testApp.war, the file will be placed in the root application directory
as /webapps/testApp.war. The WAR file will contain everything from the
test directory down.

The Botanical Application

The Botanical Market in upstate New York has developed a thriving online
business by selling a variety of rare herbs to the general population. Their
website is simple, informative, and efficient. The developers focused their
efforts on designing a web application that is portable because the company
predicts future upgrades as their revenues grow.

In structuring the web application, the developers placed all static and JSP
files in the context directory. Because they were accessing a database, which
contained the inventory and order information, some servlets needed Java
Database Connectivity (JDBC) calls. The drivers to the database were in
JAR format, so they were placed in the context/WEB-INF/lib/ directory.
The servlets, such as the HerbServlet, the OrderServlet, and the UserServlet,

http://www.sybex.com

Using Deployment Descriptor Tags 103

Using Deployment Descriptor Tags

A container can contain multiple web applications. But for each web
application, there must exist only one deployment descriptor, also referred
to as a web.xml. This file identifies and maps the resources for a single web
application and is stored at the root of the /WEB-INF directory. Written
in Extensible Markup Language (XML), the web.xml utilizes predefined
tags to communicate resources and information for use by the web appli-
cation. All commercial web servers will generate the web.xml file by using
a GUI administration tool. Although this makes life a little easier for the
developer, it is still the developer’s responsibility to be able to understand the
various tags and modify the file manually if changes or errors occur.

In this section, we will discuss the basic tags used to construct a web.xml
file. We will then identify the tags used to map a request to a servlet and tran-
sition to tags that identify a servlet and its parameters. We’ll start by show-
ing you a complete but simple web.xml (see Listing 3.1) and then discuss its
tags and purpose in detail.

Listing 3.1: A Sample Deployment Descriptor

<?xml version=”1.0” encoding=”ISO-8859-01”?>

<!DOCTYPE web-app PUBLIC “-//SUN Microsystems, Inc.//

 DTD Web Application 2.3//EN” “http://java.sun.com/

 dtd/web-app_2_3.dtd”>

were placed in the context/WEB-INF/classes/ directory. After all pieces were
placed in their appropriate locations, and the product was ready for pro-
duction, the developers compressed the web application into a file called
HerbApp.war starting at the context directory. That single file now resides
in the current web server’s default application directory.

The benefit of configuring the web application to meet the standard direc-
tory structure is that it will require very little administrative work to relocate
the application to a new web server when the company chooses to upgrade.
In an ideal setting, it should be as easy as moving the WAR file to the new
server’s application directory.

http://www.sybex.com

104 Chapter 3 � Servlet Web Applications

<web-app>

 <display-name>Exotic Bird Encyclopedia</display-name>

 <context path=”/features” docbase=”

 c:/projects/birdSite/features” reloadable=”true”>

 <context-param>

 <param-name>SEARCH_PATH</param-name>

 <param-value>/features/utilities</param-value>

 </context-param>

 </context>

 <servlet>

 <servlet-name>Search</servlet-name>

 <servlet-class>SearchServlet</servlet-class>

 <init-param>

 <param-name>defaultType</param-name>

 <param-value>cockatiels</param-value>

 <description>default search value</description>

 </init-param>

 </servlet>

 <servlet-mapping>

 <servlet-name>Search</servlet-name>

 <url-pattern>/utilities/*</url-pattern>

 </servlet-mapping>

 <session-config>

 <session-timeout>60</session-timeout>

 </session-config>

 <mime-mapping>

 <extension>pdf</extension>

 <mime-type>application/pdf</mime-type>

 </mime-mapping>

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

http://www.sybex.com

Using Deployment Descriptor Tags 105

 <welcome-file>index.htm</welcome-file>

 </welcome-file-list>

</web-app>

This web.xml file begins by providing versioning information. The first
tag, ?xml, defines the version of the language being used. The character-
encoding value is an ISO value and is defined as the Latin standard, which
is used for American English countries. The !DOCTYPE… line indicates the root
XML element and the location for the document type definition (DTD) spec-
ification. A DTD is used to specify the structure of an XML document and to
validate the document. The standard for a web application is to use the DTD
spec provided by Sun Microsystems, which designates the web-app as the
root element or tag. As you can see in the example, the servlets defined
within the DTD will use the 2.3 or earlier spec. This information helps the
container synchronize with the provided resources.

After the format tags have been defined, you are ready to begin mapping
all resources to the web application. Because the DOCTYPE tag defines the
root element as web-app, you are required to start with the web-app tag to
open the form. Had the DOCTYPE indicated the root element as web-app2,
then the XML document would begin with web-app2. In our example,
all resources are defined between the opening <web-app> and closing
</web-app> tags.

The first set of tags within the web application relate to the context. As
stated earlier, the context defines the root directory for all resources in a
specific web application. The container reads the web.xml file to determine
this location. Within the context tag is an attribute called path. The path
attribute points to the root directory of all resources for the web application.
Because a single web.xml file can utilize multiple servlets, all servlets will
start at the directory defined by the path. The actual location of that direc-
tory on the server is expressed via the docbase attribute.

If you don’t include a context tag, the container assumes a default context
of ‘/’.

Within the opening and closing context tags, you can define parameters
that are available to all servlets within the web application. By using
the ServletContext method getInitParameter(…), you can pass in the
param-name and have the param-value returned within the servlet.
Remember, the value is always represented as a String. Usually, the
context-param specifies database drivers, protocol settings, and URL
path information. Although these tags are important, they are not manda-
tory. Defining the servlets of the web application is most significant.

http://www.sybex.com

106 Chapter 3 � Servlet Web Applications

Basic Servlet Tags

To define a servlet, the XML document uses the opening <servlet> and
closing </servlet> tags. All servlet-related characteristics are defined
within these tags, such as the name, class, description, and parameters. When
referring to the various servlets in an application, it is sometimes convenient
to do so by using an alias name—a human name independent of the actual
servlet name that follows the XXXServlet naming standard.

<servlet>

 <servlet-name>Search</servlet-name>

 <servlet-class>SearchServlet</servlet-class>

</servlet>

In this example, we define the alias servlet name as Search, while the
actual servlet class name is SearchServlet. This enables the servlet to be
referred to by a name different from the actual servlet name. Consequently,
if you later changed the servlet class to a servlet class that had a completely
different name, no source code or changes would need to be modified.

Initialization Parameters

For now, let’s complete the servlet tag by looking at how to define servlet
parameters:

<servlet>

 <servlet-name>Search</servlet-name>

 <servlet-class>SearchServlet</servlet-class>

 <init-param>

 <param-name>defaultType</param-name>

 <param-value>cockatiels</param-value>

 <description>default search value</description>

 </init-param>

</servlet>

Although a servlet can contain multiple parameters, they will always
be embedded between a set of <init-param></init-param> tags. The
init-param tag defines a name, value, and description for a variable that
the outer servlet can access. In our example, the SearchServlet class can
use the getInitParameter("defaultType") method, inherited from the
GenericServlet class, to get the value cockatiels. The description is
optional but helps describe the variable’s purpose. It is usually only valu-
able to GUI tools that will use the description to enable the user to know

http://www.sybex.com

Using Deployment Descriptor Tags 107

what to enter into the field. The closing </init-param> tag closes the
information for the one parameter. If another parameter needed to be
defined, a new set of <init-param></init-param> tags must be defined.
Finally, the closing servlet tag, </servlet>, marks the end of specific
information pertaining to the one servlet.

Mapping the URL to the Servlet

Before the server container can access a servlet’s parameters, it must first locate
the servlet. When a container is started, it first reads its server’s deployment
descriptor file to determine the server configuration. Then the container
launches all desired web applications, reads the associated web.xml file, and
stores the information in memory. Within the web.xml file, a tag called
servlet-mapping is used to help map requests to actual servlets.

If mapping information is not included, the container will look to default
directories defined by the server’s deployment descriptor to find the speci-
fied servlet. For the reference web server implementation Tomcat, the default
directory for all automatically loaded web applications is the directory called
tomcat-installation-directory/webapps/.

Placing all web applications in a default directory is simple, but is not the
most organized approach. A container that is running complex applications
should be able to locate web applications in designated locations outside the
default directory structure. By using the context and servlet-mapping
tags, you can place a servlet in a specific location and point the container to
that location.

When a request is passed to the container, the header contains a URI
defining the context and path info to the servlet. The context path from the
URI is mapped to the web application’s context path by using the docbase
attribute. Remember that this information was read and stored when the
container first started running. Additional path information is then mapped
to the url-pattern directories defined within the servlet-mapping tag.
Let’s take a closer look at a code snippet from the preceding example:

<servlet-mapping>

 <servlet-name>Search</servlet-name>

 <url-pattern>/utilities/*</url-pattern>

</servlet-mapping>

http://www.sybex.com

108 Chapter 3 � Servlet Web Applications

The url-pattern tag identifies the directory path following the context.
Consequently, when a client requests the services of the SearchServlet, the
container will map it to the /features/utilities/ directory, because it
is the context as defined by the context element in the XML document.
Given the following HTTP request, we will map the container’s path to
find the correct servlet:

http://localhost:8080/features/utilities/Search

From this request, we can extract the URI:

URI = features/utilities/Search

The container then uses a default mapping mechanism to find the servlet:

/context_name/servlet/Servlet_Name

The container looks for the context directory /features and finds that it
is located in c:/projects/birdSite/features. The servlet is then mapped
to the url-pattern directory /utilities, and the alias name Search is then
mapped to a class file called SearchServlet. The complete location would
look like the following:

c:/projects/birdSite/features/

 utilities/SearchServlet.class

This example demonstrates how each simple category can create a path to
the servlet. Now, let’s take a look at an example that utilizes packages and
multiple directories for the url-pattern. Based on the information pro-
vided, you, like the container, should be able to construct the full path for the
servlet.

context path = /car/engines docbase= c:/projects/

alias name = TurboRacer

servlet-name = com.eei.RaceCarServlet

url-pattern = /vehicles/fast/*

By utilizing all the information, you should map the servlet to the follow-
ing location:

c:/projects/car/engines/vehicles/fast/

 com/eei/RaceCarServlet.class

The container takes the url-pattern (/vehicles/fast) that is associ-
ated to the servlet alias name (TurboRacer) and then maps that name to the
actual servlet class (com.eei.RaceCarServlet).

Figure 3.1 breaks down each section graphically. The servlet will be
accessed as long as the container can map the web.xml tag information to the
URI provided by the client request.

http://www.sybex.com

Using Deployment Descriptor Tags 109

F I G U R E 3 . 1 URL mapping

The servlets located in the /WEB-INF directory are automatically mapped for
the specified application. By using the servlet-mapping element tag, you can
utilize servlets that are not, by default, part of a given application and that
reside in a completely different directory structure.

Session Configuration

After a request is mapped to a servlet, an HttpSession object is assigned to
the client. Therefore, if there are 5000 user requests, the container will main-
tain 5000 HttpSession objects on the server. If portions of those users are
inactive, then the application is wasting memory resources. A timeout flag
can be set two ways:

� Within the servlet code, by using the HttpSession object’s method,
setMaxInactiveInterval(int)

� Within the web.xml file by using the session-config tag.

The first approach utilizes servlet code to set the maximum number of
seconds a request can remain inactive. The following code snippet demon-
strates how this can be done:

…

public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 …

 HttpSession session = req.getSession();

 session.setMaxInactiveInterval(60);

 …

}

…

docbase context path url-pattern

c:/projects /car/engines /vehicles/fast /com/eei/RaceCarServlet.class

http://www.sybex.com

110 Chapter 3 � Servlet Web Applications

The downside to this approach is that when the number of seconds
needs to be modified, the code itself must be recompiled. To solve this
problem, you could use a deployment descriptor parameter value instead
of hard-coding the number of seconds. Now, the question often asked is,
“Why not use the second approach altogether because it uses the deploy-
ment descriptor to define the value and exclude the code from the servlet?”
A developer might opt to choose one approach over the other because the
first applies the timeout value to a specific servlet, rather than the entire
web application.

The second approach defines the maximum time all inactive HttpSession
objects can exist through the web.xml file by using the session-config tag.

<session-config>

 <session-timeout>60</session-timeout>

</session-config>

Modifications to the web.xml file do not require the servlet to be recom-
piled. Instead, the container simply needs to be restarted and to reload
the servlet. In both examples, we set the timeout amount to 60 seconds.
Ultimately, they both achieve the same end result—the code authorizes
the container to remove the inactive session from memory after its time
expires.

MIME Type Mappings

When transmitting information between the client and server, both parties
need to know the format of the content being transferred. The Multipurpose
Internet Mail Extensions (MIME) type defines the format of the request
or response. A MIME type is a String that defines the type and subtype:
type/subtype. Some common examples are text/html, text/plain,
and image/gif.

When a servlet sends a response to a client, the browser needs to know
how to render the information received. Consequently, the server can con-
struct a response to notify the client of the MIME type, by using two different
approaches:

� By using the HttpServletResponse’s method: setContentType(…)

� By using the mime-mapping tag in the web.xml file for the web
application

http://www.sybex.com

Using Deployment Descriptor Tags 111

The first approach utilizes servlet code to set the MIME type of the
response. The following code snippet demonstrates how this can be done:

…

public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 …

 res.setContentType(“application/pdf”);

 …

}

…

Again, this applies the content type to a specific servlet. To apply the
content type to all public files of a specific extension within an entire web
application, you can use the mime-mapping tag. The following example
demonstrates how the context will automatically associate the application/
pdf MIME type with all files with the extension of .pdf:

<mime-mapping>

 <extension>pdf</extension>

 <mime-type>application/pdf</mime-type>

</mime-mapping>

After the client receives this response, it knows it must use a tool such as
Adobe Acrobat Reader to interpret the .pdf response.

Welcome File List

When a website is accessed, the index.html file is usually the first page dis-
played. Typically this file is the default page for a website or a web application.
In fact, if a client enters a URL path to a servlet, usually the web server will
automatically change focus to point to the welcome page associated to the
application. For example, if a user enters http://www.testWebserver
.com/application, the site switches to http://www.testWebserver.com/
application/index.html.

The index.html file is the default welcome page for servlets. Including
the welcome-file-list tag in the web.xml file overrides the server defaults
and enables the container to search for specified welcome pages. A welcome
list can point the web server to alternative display pages.

<welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

http://www.sybex.com

112 Chapter 3 � Servlet Web Applications

 <welcome-file>start.html</welcome-file>

 <welcome-file>go.html</welcome-file>

 <welcome-file>index.html</welcome-file>

</welcome-file-list>

The files listed within the welcome-file-list tag apply to the web
application and its subdirectories. Let’s take a look at an example. Imagine
a company with a web application that resides in the root directory called
/SpiderInc.com. Its subdirectories and files look similar to the following
structure:

/SpiderInc.com

 |__index.html

 |__employees/

 |____index.jsp

When SpiderInc.com is accessed, the welcome page index.html is dis-
played by default. Now, when the employees/ link is accessed, the user
might be prompted for a login and password entry. After access is granted,
then a welcome page could be generated dynamically to acknowledge the
user’s name and information. The welcome page for the employee site is
called index.jsp. In order for the container to associate the index.jsp file
to the welcome page, the file index.jsp must be defined in the web.xml
file with a welcome-file tag. This entry identifies additional filenames for
the container to look for when searching for the welcome page for a site.
In our example, the container will first look for index.html. If it can find
it in the employees/ directory, it will look at the first filename in the
welcome-file list and search for that file next. Because index.jsp is
found, the container displays that page to the client. Without the XML entry,
the container would fail to display the starting page because index.html
is not available.

The specification does not address the order in which containers will access
the welcome file list. Generally, most containers start with the first file in the
list when searching for a welcome page. Then again, keep in mind that the
order the files are accessed is container specific.

http://www.sybex.com

Exam Essentials 113

Summary

In this chapter, we covered the details associated with the web appli-
cation. We began by addressing the basic directory structure for a web
application. Each resource should be placed in a specific location for the
container to access its information when it is needed. Because the container
doesn’t always find direct matches for the files it is searching, we also
covered the mapping rules a container will use to select the best fit. Finally,
we described how to wrap up the entire application in a WAR file for
production.

The second part of this chapter focused on identifying the most common
deployment descriptor tags. The overall tag list is very large, and we covered
only those that are general to the web application. Specifically, we addressed
tags that apply to the entire application, such as the context, configuration,
MIME type, and welcome tags. In addition to those, we covered tags specific
to the servlets contained within the web application itself.

The web application is made up of multiple pieces. It is important that the
pieces are arranged logically and their purpose is identified to the server.

Exam Essentials

Be able to identify the required files for a web application. A web
application consists of a variety files from the following list:

Servlets (for example, PlaceOrderServlet.class)

JSP pages (for example, Receipt.jsp)

Utility classes (for example, CalculateTotals.class)

Static documents (for example, welcome.html)

Client-side Java applets, beans, and classes (for example,
OtherJavaFiles.jar)

A standard configuration file (for example, web.xml)

Be able to identify the directory structure of a web application. Each
file should be placed in its associated directory. There are two main
directories you should be familiar with: the context (or root) and the
/WEB-INF. Files placed directly in the context are visible and accessible to

http://www.sybex.com

114 Chapter 3 � Servlet Web Applications

the client. This is quite the opposite of files located directly in, or in
subdirectories of, the /WEB-INF directory.

Be able to describe a WAR file. A WAR file is a single compressed file
that contains all the contents of a web application. The same mechanisms
used to compress Java applications into JAR files are used to compress
web applications into WAR files. The main difference between the two
files is the name, which identifies how the container should handle them.
A WAR file signifies something very different to a web server than a
JAR file.

Be able to discuss the most commonly used deployment descriptor tags.
The deployment descriptor file, or web.xml file, contains a variety of tags
that identify and characterize the resources within a single web applica-
tion. Each XML tag communicates a specific meaning to the server.

Key Terms

Before you take the exam, be certain you are familiar with the follow-
ing terms:

/META-INF deployment template descriptor
(DTD)

/WEB-INF/classes exact mapping

/WEB-INF/lib/*.jar extension mapping

/WEB-INF/web.xml Java archive (JAR) file

context path mapping

default mapping web application

deployment descriptor web archive (WAR) file

http://www.sybex.com

Review Questions 115

Review Questions

1. Which of the following item(s) can be included in a web application?
(Choose all that apply.)

A. Servlets

B. Utility classes

C. Client-side beans

D. An image file

2. Which of the following statements is true?

A. It is mandatory that all servlet-compliant containers adhere to the
structured directory hierarchy defined by the servlet specification.

B. It is not mandatory or required that all servlet containers adhere to
the directory structure defined by the specification.

C. In order for a servlet container to be certified by Sun, it does not
need to adhere to the specification.

D. None of the above.

3. Which of the following files could correctly define an entire web
application?

A. chat.war

B. chat.jar

C. chat.xml

D. None of the above

4. In which directory are you likely to find the file index.html? (Assume
the context is defined as /cars.)

A. /cars

B. /cars/WEB-INF

C. /cars/WEB-INF/resources

D. /cars/META-INF

http://www.sybex.com

116 Chapter 3 � Servlet Web Applications

5. Assume the context for the web application you are working with is
/orderApp. In which directory are you most likely to find the single
file Order.class?

A. /orderApp

B. /orderApp/WEB-INF

C. /orderApp/WEB-INF/lib

D. /orderApp/WEB-INF/classes

6. Assume the context for the web application you are working with is
/book. In which directory are you most likely to find the file called
BookApp.war?

A. /book

B. /book/WEB-INF

C. /book/WEB-INF/lib

D. /book/META-INF

7. Given the following data elements, which answer best maps to the
servlet?
Context path = /bikes/motors
docbase = c:/projects/bikes/motors
Alias name = R6
Servlet name = com.eei.BikeServlet
url-pattern = /vehicles/fast/*

A. c:/projects/bikes/motors/bikes/motors/vehicles/fast/
BikeServlet.class

B. c:/bikes/motors/vehicles/fast/com/eei/
BikeServlet.class

C. c:/projects/bikes/motors/vehicles/fast/R6.class

D. c:/projects/bikes/motors/vehicles/fast/com/eei/
BikeServlet.class

8. The <session-timeout></session-timeout> tag must be embed-
ded in which outer tags?

http://www.sybex.com

Review Questions 117

A. <web-app><session-config>HERE</session-config>
</web-app>

B. <web-app><servlet><servlet-config>HERE</servlet-
config></servlet></web-app>

C. <web-app>HERE</web-app>

D. None of the above

9. Which of the following XML tags apply features to the entire web
application, rather than to an individual servlet? (Choose all that
apply.)

A. mime-mapping

B. init-param

C. context-param

D. session-config

10. Which of the following tags is used to identify the minimum amount
of time a container must wait to remove an inactive HttpSession
object?

A. session-config-min

B. session-timeout-min

C. session-timeout-max

D. session-timeout

E. session-config

11. Which of the following methods is used to retrieve the value associated
to the parameter name provided within the init-param tag?

A. getParameter(String name)

B. getInitParameter(String name)

C. getParameters()

D. None of the above

http://www.sybex.com

118 Chapter 3 � Servlet Web Applications

12. What is the return value of a method call to getInitParameter
(String name) if the name passed in is not found in the web.xml
document?

A. A ServletException is thrown.

B. null is returned.

C. A blank string is returned.

D. The code will not compile.

13. Which opening tag is used to hold content-type mapping information
for a response?

A. content-type

B. mapping-type

C. mime-mapping

D. content-mapping

14. In which directory are you likely to find the file myServlet.jar?

A. root/WEB-INF

B. root/

C. root/WEB-INF/lib

D. root/META-INF/

15. Which of the following statements is true?

A. Request mapping is case sensitive.

B. If mapping information is not included, the container will look to
default directories defined by the server’s deployment descriptor
to find the specified servlet.

C. Containers often have implicit mapping mechanisms built into
their systems.

D. All of the above.

http://www.sybex.com

Answers to Review Questions 119

Answers to Review Questions

1. A, B, C, D. All the objects defined can be included in a web
application.

2. B. Although it is recommended, it is not mandatory or required that
all servlet containers adhere to the directory structure defined by the
spec. However, to be Sun certified, a servlet container must meet
the requirements of the specification.

3. A. Although a JAR file contains compressed classes and resources for
a Java application, a WAR file specifically contains these same types
of files, but for a web application.

4. A. The index.html file is forwarded to the web client. As a result, it
cannot be located in either the /WEB-INF or /META-INF directories, or
any of their subdirectories.

5. D. All individual classes are located in the /WEB-INF/classes direc-
tory. If the class is compressed and converted to a JAR file, its JAR file
needs to be placed in the /WEB-INF/lib directory.

6. A. The WAR file is usually stored in the context directory. Within
the file exists the /WEB-INF directory and all its subdirectories. The
/META-INF directory must exist within the WAR file as well.

7. D. The docbase identifies the actual directory starting path for the
servlet. It includes the context path, so there is no need to repeat
the path directory structure. The url-pattern then defines the specific
location of each servlet rather than storing them all at the root. Finally,
the package structure information is incorporated into the path to
locate the end class.

8. A. The session-timeout tag is used in conjunction with the
session-config tag. It is not specific to a servlet, but rather applies
to all servlets in the defined web application.

9. A, C, D. The mime-mapping tag applies the MIME type for any file
with the specified file extensions. The init-param is not a correct
answer because it provides parameters for a specific servlet, unlike
the context-param tag. This tag is general to all files in the web
application. Finally, the last option is also correct because the time-
out amount defined with the session-config tag applies to all
HttpSession objects.

http://www.sybex.com

120 Chapter 3 � Servlet Web Applications

10. D. The session-timeout tag identifies the number of seconds a
container must wait before removing an inactive HttpSession object.

11. A. The getParameter(String name) of the ServletRequest
class is used to retrieve the value associated to the name passed
in for a specific servlet. This should not be confused with the
getInitParameter(String name) method found in the
ServletContext class and used to retrieve context parameters.

12. B. When the string passed into the getInitParameter (String
name) method cannot be matched to a param-name tag, null is
returned.

13. C. The mime-mapping tag identifies the MIME type for files with the
specified file extensions.

14. C. All Java archive files are read from the /lib directory, which is
located inside /WEB-INF.

15. D. When matching URL names to their respective files or directories,
the casing is important. This is best explained when trying to match
Java files. A servlet called MyServlet.class is different from one
called Myservlet.class. The next two options are true as well,
because containers resort to default mapping techniques and are
often built with implicit mapping mechanisms (as defined by the
specification).

http://www.sybex.com

Chapter

4

The Servlet Container
Model

THE FOLLOWING SUN CERTIFIED WEB
COMPONENT DEVELOPER FOR J2EE
PLATFORM EXAM OBJECTIVES COVERED
IN THIS CHAPTER:

�

3.1 Identify the uses for and the interfaces (or classes) and

methods to achieve the following features:

�

Servlet context init. parameters
�

Servlet context listener
�

Servlet context attribute listener
�

Session attribute listeners

�

3.2 Identify the WebApp deployment descriptor element name

that declares the following features:

�

Servlet context init. parameters
�

Servlet context listener
�

Servlet context attribute listener
�

Session attribute listeners

�

3.3 Distinguish the behavior of the following in a distributable:

�

Servlet context init. parameters
�

Servlet context listener
�

Servlet context attribute listener
�

Session attribute listeners

http://www.sybex.com

W

hen defining a data element, you usually need to consider
its life span, or

scope

. Depending on its placement, a parameter or attribute
is accessible by various pieces of an application. In this chapter, we are going
to provide a close look at how data is affected when it is stored at different
levels of an application. The first level is global to all resources within the
application, and it is known as the context. The second level exists during
the life of a client’s connection, and is commonly referred to as the session.
Finally, we will conclude by addressing how data within these different areas
is affected when the application is run in a distributed environment.

At all three levels, we will discuss how parameters and attributes can
be accessed and manipulated. We will show you how either the context or
session can respond to changes in its attributes by using specific listener
interfaces. Specifically, we will discuss what happens when:

�

The context or session is initialized or destroyed

�

Attributes are added, removed, or replaced from a context or session

Our goal is to ensure a thorough understanding of how parameters and
attributes are handled for each object. In addition, you must be familiar with
the specific interfaces and generated events used to respond to changes in
either one’s life-cycle methods or attributes.

ServletContext

A

n application usually consists of many resources, such as multiple
servlets, audio files, and static HTML files, to name a few. Maintained
within the container, each resource is generally accessible to the other. How-
ever, sometimes the developer’s desire is not to access another resource but

http://www.sybex.com

ServletContext

123

rather to allow resources to share data. This can be accomplished using the

ServletContext

 object. In this section, we will first discuss the details and
methods associated with a

ServletContext

 object. This includes how any
servlet within an application can use its context to access the following:

�

Initialization parameters passed through

web.xml

�

An

InputStream

 to read data from a specified resource

�

A

RequestDispatcher

 object to transfer a request and response
object

�

Attributes shared by all resources

After you understand the value that a

ServletContext

 adds to an appli-
cation, we will shift gears and cover the various listener interfaces and event
classes that can be used to respond to changes in a context’s life cycle and
attributes. The two interfaces we will discuss are:

�

ServletContextListener

�

ServletContextAttributeListener

The

ServletContext

 is a critical object that helps glue all the pieces of an
application together.

ServletContext

 Methods and Attributes

For each web application, there exists one

ServletContext

 object con-
tained within the application’s

ServletConfig

 object. The

context object

acts as a reference to the web application. When a servlet is initialized, the
container provides it a handle to the context object for the servlet to com-
municate with the container. All servlets within the application use the single
context object to access information about the container and server in which
they reside. This information can then be displayed to the client and/or used
to change or restrict servlet behaviors. For example, the context can be
used to dispatch a request, write to a log file, or simply learn about the serv-
let version being supported. The context can be accessed by the servlet
directly or indirectly. Because all servlets extend an implementation of the

GenericServlet

 class, they have direct access to the following method:

ServletContext getServletContext()

This method returns the
single context object associated with the entire web application. This
method is originally defined in the

ServletConfig

 interface, which the

GenericServlet

 class implements.

http://www.sybex.com

124

Chapter 4 �

The Servlet Container Model

For the most part, the context contains informative methods—methods
that provide information about resource location, parameters, and attribute
values managed by the container and server.

The current specification no longer provides handles to other servlets
within the application. Those methods have been deprecated and return
empty or null values. The only direct link that is currently provided by the
context is a handle to the

RequestDispatcher

, to forward a task, and streams

used to either write log information or read objects.

The context enables the developer or assembler to define values that apply
to the entire web application. They can define either parameter values or
attribute values.

Parameter values usually define the application’s configuration informa-
tion at deployment time. The value associated with the name is represented
as a

String

; however, it can be converted to an appropriate object under the
correct circumstances. For example, a parameter might provide a hidden
file or image path and name that servlets might be interested in loading at
some point, or it might simply provide an e-mail address to the application’s
webmaster. By using the

context-param

 tag within the DTD, you can
specify the name and value pair, as seen here:

<context-param>

 <param-name>picture</param-name>

 <param-value>/WEB-INF/graphics/image.gif</param-value>

</context-param>

The

context-param

 tag must be placed at the start of the

web-app

 tag. In other
words, it can follow the

<web-app>

 tag or its

<description></description>

tag only.

All servlets within the web application can access this filename by using
the following methods available in the

ServletContext

 class:

String

getInitParameter(

String

name

)

By passing in the name of
the parameter, this method returns a string representation of the value. A

null

 value is returned if the parameter doesn’t exist.

Enumeration

getInitParameterNames()

This method returns an
enumeration of all names defined within the

context-param

 tags. If there
are none, the return value is empty.

http://www.sybex.com

ServletContext

125

The following code snippet shows how a servlet might access this param-
eter value:

…

public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException, ServletException {

 ServletContext context = getServletContext();

 String pictureName =

 context.getInitParameter(“picture”);

 …

}

After this information is acquired, you can use additional context meth-
ods to read in the actual object. Here are a few for you to consider:

URL

getResource(

String path

)

throws

java.net
.MalformedURLException This method returns a local or remote
resource to the specified path. The path is viewed as relative to the context
for the application and begins with a forward slash (/). If a resource can-
not be mapped to the specified path, the method returns a null.

InputStream getResourceAsStream(String path) This method
creates an InputStream linked to a resource for the path parameter.
The path variable can consist of a resource of any type or length.

String getMimeType(String file) This method returns a string
representation of the MIME type for the specified file.

RequestDispatcher getRequestDispatcher(String path) This
method returns the RequestDispatcher object to the resource specified
by the path. It enables a current servlet to forward a request to the
resource or to include the resource in a response.

Continuing our picture example, we are going to read in the image file to
convert it to an ImageIcon object that we can use in an applet embedded
within the client interface:

…

public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException, ServletException {

 ServletContext context = getServletContext();

 String pictureName = context.getInitParameter(“picture”);

 InputStream is = context.getResourceAsStream(pictureName);

http://www.sybex.com

126 Chapter 4 � The Servlet Container Model

 byte[] array = new byte[1024];

 is.read(array);

 ImageIcon icon = new ImageIcon(array);

 is.close();

}

After we access the actual path of the picture parameter, we use the
getResourceAsStream method to return to us an InputStream to read
each pixel byte. To avoid a complex example, we’ve stipulated that the size
of the image is always 1,024 bytes. The bytes are read into a byte array, and
then that array is passed to the javax.swing.ImageIcon(…) constructor to
create a graphical object that can be embedded in any swing component.
A more convoluted but practical process would encompass reading in all the
bytes without knowing the actual size beforehand. Our goal is to focus on
the usage and rules of the ServletContext object.

Aside from providing read-only access to initialization parameters, the
context also enables the servlet to read from and write to context attributes.
Unlike parameters, attributes allow the passing of Objects rather than just
Strings. Attributes are used to share common objects with various resources.
Specifically attributes are a way for the server to communicate information
to the servlet. The server could make available statistics on the server load,
or pass a handle to a shared resource pool, or provide other bits of informa-
tion available at the server level. The only mandatory attribute a server must
make available is the location of a private directory for the application’s
context. This value can be accessed through the javax.servlet.context
.tempdir attribute. Needless to say, attributes can also be set by the user.

Let’s say you are writing an application for a sushi restaurant called
Kazumis. The owner specifically asked that the interface display the current
lunch menu with the daily specials. Because these values are likely to
change depending on the date, you will set them up as attributes.

Before we show you the code, let’s address a few details. It’s important to
know that attributes can be defined within a web application by a servlet, or
within the servlet container when the application is assembled or deployed.
The names are usually defined by using the packaging structure to avoid
overriding one another (for example, java.*, javax.*, com.sun.*,
and so on).

Attributes are defined and stored by using getXXX and setXXX methods.
Unlike parameters, they are not defined within a deployment descriptor.

http://www.sybex.com

ServletContext 127

All servlets within the web application can access these values and set
them by using the following methods available in the ServletContext class:

void setAttribute(String name, Object value) This method
binds the specified object to the name for access by all resources within the
web application.

Object getAttribute(String name) This method returns the bound
object to the name specified.

In the earlier specifications, it was not unusual to develop a servlet
designed to prepare the context for all other resources. For example, instead
of defining the attribute name and value through the web container, you
could have a servlet take care of the task by using similar code to the
following:

…

public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType(“text/plain”);

 PrintWriter out = res.getWriter();

 ServletContext context = getServletContext();

 context.setAttribute(“com.kazumi.specials.daily”,

 “Unagi:2 pieces for $2”);

 context.setAttribute(“com.kazumi.date”, new Date());

 out.println(“The daily special is set”);

}

…

In this example, the attributes are applied to the context by using the
setAttribute(…) method. Later, we will discuss the ServletContext
AttributeListener interface that was added in the 2.3 specification to
enable a class to respond to attribute changes made to a context. For now, let’s
focus on the rules and concept. A servlet uses the getAttribute() method to
retrieve the stored attribute values. For example, you can now construct the
part of the servlet that displays the menu with the defined daily special:

…

public void doGet(HttpServletRequest req,

 HttpServletResponse res)

http://www.sybex.com

128 Chapter 4 � The Servlet Container Model

 throws ServletException, IOException {

 res.setContentType(“text/html”);

 PrintWriter out = res.getWriter();

 ServletContext context = getServletContext();

 String special = (String)

 context.getAttribute(“com.kazumi.specials.daily”);

 Date date = (Date)

 context.getAttribute(“com.kazumi.date”);

 DateFormat df =

 DateFormat.getDateInstance(DateFormat.MEDIUM);

 String now = df.format(date);

 out.println("<HTML>");

 out.println("<BODY>");

 …

 out.println("<P> The special for “ + now + “ is: “ +

 special + “</P>");

 …

 out.println(“</BODY></HTML>”);

}

By using the ServletContext’s getAttribute(…) method, you can
retrieve the object associated with the specified key name. The names
themselves are either custom or defined within the servlet specifications. In
Chapter 2, “The Servlet Model,” we listed several predefined attribute key
names created for request objects. These same names can be used to set
values that apply to the entire context. Table 4.1 lists the predefined attribute
names that are most likely used to set general messaging and exceptions for
a ServletContext object.

T A B L E 4 . 1 Attributes for ServletContext

Standard Attribute Name Type

javax.servlet.error.exception_type java.lang.Class

javax.servlet.error.message java.lang.String

javax.servlet.error.exception java.lang.Throwable

http://www.sybex.com

ServletContext 129

By using the setAttribute(…) method, you can pass the standard
attribute name and its associated value. This enables developers to use a
standard naming system for exceptions that occur at the context level.

There are several important distinctions between context parameters and
attributes. The following are a few that you should be aware of:

� Parameters can be set only from within the container or the web.xml
file. Attributes, however, can be set by the servlet or the container.

� Parameters return only Strings, whereas attributes allow key names
to be associated with Objects.

� The lookup names used for attributes are either predefined or custom,
but they should be defined by using a package structure. For example,
the attribute name for error messages is javax.servlet.error
.message.

In summary, the context utilizes parameters and attributes as a means
of sharing information and objects with the resources of the web applica-
tion. Initialization parameters are defined in the deployment descriptor
and are accessible through the context. They provide configuration infor-
mation in the form of String objects. Attributes, on the other hand, share
objects with the application entities. Their name/value pairs can be set
through the container or through the servlet using the context. They are
less geared to providing information, and are more geared to providing
resources.

Listener Interfaces and Event Classes

New to the 2.3 servlet specification are listener classes that help monitor the
servlet context and session life cycle. The web container can be configured
to notify listeners when a context is initialized or destroyed, when attributes
are added or removed, or when a session is set to be passivated or activated.
In this section, you will look at each listener interface and see when and how
these listeners are used.

ServletContextListener

During the life of a web application, many resources are created and uti-
lized by various entities such as servlets. When an application is created,
it might be desirable to ensure that all servlets are provided a particular

http://www.sybex.com

130 Chapter 4 � The Servlet Container Model

resource (for example, a database connection). When the application is
destroyed, those resources might need to be removed as well. The addition
of the ServletContextListener interface is designed to accomplish
such tasks.

A class that implements the ServletContextListener interface must
define two methods:

void contextInitialized(ServletContextEvent e) This method
is called when the context is created. You are guaranteed that this
method will complete before any requests are serviced.

void contextDestroyed(ServletContextEvent e) This method is
called when the context is about to be destroyed. This method acts like a
finalize method. It is used to clean up resources.

The most common example used to demonstrate the effectiveness of a
ServletContextListener is the creation and removal of a single connec-
tion or a connection pool. A connection pool creates a defined number of
connections to a database. Instead of allowing each client a continuous con-
nection, the connections are borrowed from the pool when they are needed
and returned after a task is completed. By checking connections in and out,
the server can provide more clients database connectivity while utilizing
fewer connections. The end result is a more efficient application. To create
such an environment, the connections, or the pool, must be created before a
request to a servlet can be processed. This can be done with a listener, as
shown in Listing 4.1.

Listing 4.1: Using the ServletContextListener

package com.spiderInc;

import java.sql.*;

import javax.sql.*;

import javax.naming.*;

import javax.servlet.*;

public class ConnectionPoolHandler

 implements ServletContextListener {

 public void contextInitialized(ServletContext sce) {

 ServletContext context = e.getServletContext();

 String dbName =context.getInitParameter(“Database”);

http://www.sybex.com

ServletContext 131

 try {

 InitialContext ic = new InitialContext();

 PooledConnection con = (PooledConnection)

 ic.lookup("java:comp/env/jdbc/” + dbName);

 } catch (Exception e) {}

 context.setAttribute(“con”, con);

 }

 public void contextDestroyed(ServletContext sce) {

 ServletContext context = e.getServletContext();

 PooledConnection con =

 (PoolConnection)context.getAttribute(“con”);

 try { con.close(); } catch (Exception e) {}

 }

 }

When the web application begins, the contextInitialized(…)
method is invoked and must complete before any requests can be for-
warded to a servlet. It is the perfect place to initialize any variables that will
be shared by other resources. Before this particular web application can
begin, you must first create a connection pool to a particular database.
To allow for database flexibility (meaning you can change the database with-
out recompiling the application code), you define the actual database name in
the container as a parameter. By using the getInitParameter (“Database”)
method, you retrieve the database name to then look up its associated pool
using the Java Naming and Directory Interface (JNDI). The exam does not
test you on lookup techniques or JNDI, so we won’t go into it in detail.
Basically, you access a connection pool defined within the container by
using the lookup(…) method. After you acquire a connection pool, you set
that object as an attribute for all servlets to access.

When the web application is shut down, the contextDestroyed(…)
method will be called. The preceding example uses the context to get the object
associated with the attribute name con. The bound PooledConnection
object is returned and then closed.

http://www.sybex.com

132 Chapter 4 � The Servlet Container Model

Here is a code snippet showing how a servlet could use the attributes to
accomplish database tasks:

public class QueryServlet extends HttpServlet {

 public void doGet(HttpRequestServlet req,

 HttpResponseServlet res)

 throws IOException, ServletException {

 …

 SerlvetContext context = getServletContext();

 PooledConnection con =

 (PooledConnection)context.getAttribute(“con”);

 Connection connection = con.getConnection();

 Statement stmt = connection.createStatement();

 …

 }

}

The QueryServlet uses the context to get the attribute value for con.
After a handle to the connection pool is returned, a connection is checked
out from the pool. A statement is created, and then a query can be sent to the
database. From this example, you can see that the ServletContextListener
serves its purpose in initializing all necessary data before a servlet request
is invoked.

In addition to understanding how a context is initialized, it is also
important to understand when a context is likely to be initialized and
removed. The most obvious time a context is created or destroyed is when
the container first starts up the application or closes it down. However,
during the container’s life, a web application can be stopped and reloaded
if necessary. For example, you might need to switch the application to a
backup database for maintenance purposes. Changes would be made to
point the application to the right database, and the container should pro-
vide mechanisms to reload the application dynamically. Your listener
would get the new ServletContext and change the connection informa-
tion by reinitializing the database connection through the defined initial-
ization parameters.

We’ve discussed how to create a listener and when it will be invoked,
but the final piece is linking the listener to the container. The container
is made aware of a listener through the deployment descriptor. By using
the listener tags, you identify which listeners are associated with the
application. Continuing with our example, let’s take a look at how the

http://www.sybex.com

ServletContext 133

ConnectionPoolHandler is defined within the web.xml file:

<listener>

 <listener-class>

 com.spiderInc.ConnectionPoolHandler

 </listener-class>

<listener>

When the web.xml file is read, the server creates an instance of the lis-
tener class. By using introspection, it determines what listener interface
the class implements and registers it accordingly. The order in which event
classes are listed defines the order they will be invoked. The servlet 2.3 speci-
fication mandates that the container complete instantiations of the listener
classes in the application prior to executing the first request for the appli-
cation. As a result, these tags should appear before the servlets are declared
in the DTD file.

All event listener classes use the same listener tag.

There is no need to make a method call such as addXXXListener. By
using reflection, the server handles the registration between it and the
listener.

It is mandatory that the web container create an instance of all listener classes
and register them for event notification before the first request for the appli-
cation is processed. Also, the container must maintain a handle to the listener
until the last request is made for the application.

ServletContextEvent

When the container creates or destroys a context, it generates
a ServletContextEvent object that contains a reference to the actual
ServletContext. An event is simply an object that holds data about
an activity that took place. Usually, it has only get methods to access
information about the object. For the ServletContextEvent class, the
following method is available:

ServletContext getServletContext() This method returns a
handle to the application’s ServletContext.

http://www.sybex.com

134 Chapter 4 � The Servlet Container Model

The ServletContextListener is notified when a change is made to the
context for the web application. In order for the listener to respond, it most
likely needs access to the actual context.

ServletContextAttributeListener

The attributes of a context are shared by all servlets in the web application.
After a servlet gets an attribute, it is quite likely that another servlet will
change the value of that attribute by calling setAttribute(…). To ensure
application-wide consistency, receiving notification of any changes to the
attributes would be beneficial. The ServletContextAttributeListener
provides the solution. An implementing class must define the following
methods:

void attributeAdded(ServletContextAttributeEvent e) This
method is called when an attribute is added to the context.

void attributeRemoved(SelectContextAttributeEvent e) This
method is called when an attribute is removed from the context.

void attributeReplaced(ServletContextAttributeEvent e)
This method is called when an existing attribute value is changed.

The specific method of a ServletContextAttributeListener will be
called depending on the attribute action. The server locates this listener
through the deployment descriptor. Similar to the ServletContextListener,
the class name must be defined by using the listener tags. By using
reflection, the server will determine the implementing interface and know
to call this class when attribute values are changed.

When a change occurs to an attribute, the listener might want to
know which attribute was changed and then respond. For example, a
servlet might change the context database attribute. The ServletContext
AttributeListener’s attributeReplaced(…) method would be called.
The listener could then disconnect from the old database, get the new value,
and reconnect to the new database.

ServletContextAttributeEvent

The ServletContextAttributeEvent class extends the ServletContextEvent
class and adds two methods to acquire the name and value of the attribute.

http://www.sybex.com

HttpSession 135

In addition to the getServletContext() method, the following methods
are available:

String getName() This method returns the name of the attribute
being created, replaced, or removed.

Object getValue() This method returns the object of the attribute
being created, replaced, or removed.

HttpSession

While the context provides servlets access to the container’s data, a
session provides servlets access to the actions of each user utilizing the site.
An application is made up of many pieces. A significant piece is a session
object. An HttpSession object is created when a user sends its first request
to an application. The object is maintained on the server end and can be
configured to track each action the user takes while at the site. Remember,
with HTTP, each request/response transaction creates a new object. The
session connection is separate. After a session connection is established, it
exists until a user is idle for a specified time period. This period is defined
within either the deployment descriptor or the server. During the life of the
session, the user is likely to make multiple requests while transferring infor-
mation to the server. The user information can be stored in the session to
eliminate the need to resend the information to the server.

A shopping cart provides the perfect example of how sessions work.
Imagine that a client accesses a site that enables registered users to purchase
music CDs. From the time the user logs in to the time they place their order
and check out, a session exists and stores the data of the entire transaction.
The following example walks you through the process. Figure 4.1 shows
how the first request, a login, causes the container to create an HttpSession
for that user with the information sent by the client.

F I G U R E 4 . 1 The creation of a session object

ApplicationClient

login:
password:

Session object

login: Delon
password: bro7h3r

http://www.sybex.com

136 Chapter 4 � The Servlet Container Model

The session is created and is written to store the information sent by
the client request. As the session continues to persist with each additional
request, the user begins to shop. If the user finds a CD of choice, they can
add it to their cart. This information can then be stored in the session object
for checkout purposes. Figure 4.2 shows how the session object tracks the
transactions the user makes.

F I G U R E 4 . 2 Creating session data

After the user is ready to check out, they send a request to the application.
The application can use the information stored by the session to verify the
order before finalizing the transaction. Figure 4.3 shows how the session
data is used to communicate the order to the client.

F I G U R E 4 . 3 Using session data

The session information is used to verify the order before the information
is written to a database. When the user is finished, all necessary data can be
written to the appropriate storage locations and the session is removed.

The HttpSession object does not automatically track user actions. Cap-
turing and storing the information is the responsibility of the developer.

ApplicationClient

Session object

login: Delon
password: bro7h3r
item: CD
title: Invisible Band
cost: $15.00
cc#: 55555555555

Cart

Client Application

Session object

login: Delon
…

Delon,

Would you like
to purchase:

item: CD
title: Invisible Band
cost: $15

Database

NoYes

http://www.sybex.com

HttpSession 137

When a servlet receives a request, it can use the HttpServletRequest class
to access the current session or create a new one:

HttpSession getSession(boolean value) This method gets the
current session for the request user. A true parameter creates a new
session object if one does not already exist.

After a servlet has a handle to the session object, it can use the methods
within the HttpSession class to manipulate the session’s data. Some of
those methods are as follows:

Object getAttribute(String name) This method returns the object
associated with the specified name. For example, a session can hold
objects, such as a bean, for the user.

void setAttribute(String name, Object value) This binds an
attribute object to a key name.

void removeAttribute(String name) This removes the bound object
and name from the session based on the specified name.

To make servlets more robust and flexible, listener interfaces have been
added to the session object. These interfaces enable servlets to monitor and
respond to the creation or removal of a session, or to a change in its
attributes. Next, we will take a close look at the various session listener
classes, their uses, and benefits.

HttpSessionListener

HttpSessionListeners are notified when a session is created or destroyed.
Let’s say you have a brokerage application that closely monitors the user’s
every action to validate the purchase or sale of stocks. To prevent any cus-
tomer disputes, the brokerage writes each action to a hard disk while the
customer is logged in. As soon as a session becomes active, you want to make
a new and unique file for that customer. Your listener could perform the
necessary steps when it receives notification that a new session has been
added to the server. These are the methods that an implementing class must
define:

void sessionCreated(HttpSessionEvent e) This method is called
when a session is created.

void sessionDestroyed(HttpSessionEvent e) This method is
called to identify that a session has been invalidated.

http://www.sybex.com

138 Chapter 4 � The Servlet Container Model

The following is a code example of the scenario we have just discussed:

public class HttpSessionHandler

 implements HttpSessionListener {

 public void sessionCreated(HttpSessionEvent e) {

 HttpSession session = e.getSession();

 File file= new File(session.getId());

 session.setAttribute(“trackingFile”, file);

 }

 public void

 (File)sess.getAttributeDestroyed(HttpSessionEvent e) {

 HttpSession sess = e.getSession();

 File file =

 (File)sess.getAttribute(“trackingFile”);

 ServletContext context = sess.getServletContext();

 Connection con =

 (Connection)context.getAttribute(“dbConnection”);

 // use connection to write file to database

 file.delete();

 }

}

In the previous code example, it’s important to note that we use the
session.getId() method to create a file object. This approach guarantees
the creation of a unique file for each session based on the session name.
Basically, no two sessions can overwrite each other. The servlet can use the
HttpServletRequest object to get the session and access the file. A descrip-
tion of the request can then be logged to the file for future documentation.
See the following sample code:

public class BuyStockServlet extends HttpServlet {

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException, ServletException {

 HttpSession sess = req.getSession();

 File temp =

 (File)sess.getAttribute(“trackingFile”);

 FileWriter fw = new FileWriter(temp);

 Enumeration enum = req.getParameterNames();

 while(enum.hasMoreElements()) {

 fw.write(req.getMethod());

http://www.sybex.com

HttpSession 139

 String name = (String)enum.nextElement();

 String[] values =

 req.getParameterValues(name);

 for(int k=0; k<values.length; k++) {

 fw.write(values[k]);

 }

 }

 }

}

After the servlet accesses the session object, it can get the file attribute.
It wraps the File object in a FileWriter and filters through the request
data to then write it to the file. When the session is invalidated, the
HttpSessionListener is notified and the sessionDestroyed(…) method
is called to then write the file to a database.

HttpSessionEvent

When a session is created or destroyed, an HttpSessionEvent object is
instantiated to store a handle to the actual session:

HttpSession getSession() This method returns the HttpSession
object.

Because multiple clients can access a site at one time, the listener will be
called each time a new session is created. The getSession() method returns
the session for the session object created or destroyed.

HttpSessionAttributeListener

In an effort to monitor the client’s actions, you can utilize the
HttpSessionAttributeListener interface to receive notification
when a client session’s attributes are changed. This enables you to write
code that automatically generates a response to changes in their informa-
tion or wants. By defining the following methods, the implementing
HttpSessionAttributeListener class is notified when an attribute is
added, removed, or placed:

void attributeAdded(HttpSessionBindingEvent e) This method
is called after an attribute is added to a session.

http://www.sybex.com

140 Chapter 4 � The Servlet Container Model

void attributeRemoved(HttpSessionBindingEvent e) This
method is called after an attribute is removed from a session.

void attributeReplaced(HttpSessionBindingEvent e) This
method is called after an attribute is replaced within a session.

The attributes represent the data or model of a session object. When a ses-
sion’s data is changed, another response or reaction might be appropriate.
For example, imagine a web application that provides the user with a ticker
tape listing the stocks of the NASDAQ stock exchange. When a user logs
into this site, a session is created. They then have the option to select a
particular ticker for more detailed information on that stock. By selecting
a stock, they are actually adding themselves to an alias list that is notified when
changes to the stock occur. Let’s say a user clicks on the symbol XLNX.
This action causes a stock object with that symbol to be added to their
session ID. The addition of a stock object attribute can trigger the creation of
an HttpSessionBindingEvent and a call to the attributeAdded(…) or
attributeReplaced(…) method of the HttpSessionAttributeListener.
These methods could then access the session ID and get the user’s name
and e-mail address to then add them to a notification list for up-to-date
information about changes to the stocks defined within their stock object.
The process might occur in the following fashion:

1. The user begins by selecting XLNX from the listed ticker:

1. SUNW 20.4 ORCL 32.5 IBM 59.7 XLNX 35.4 QCOM 60.7

2. The symbol is added to the client’s Session Object:

Session Object

UserName = Joe

UserEmail = Joe@eei.com

Stock = stockList // This is a List object that contains

 all selected stocks.

 // In this case, it contains XLNX.

3. The HttpSessionAttributeListener is notified:

public class HttpSessionAttributeHandler

 implements HttpSessionAttributeListener{

 public void attributeAdded(HttpSessionBindingEvent e) {

 HttpSession session = e.getSession();

 String email=

 (String)session.getAttribute(“UserEmail”);

http://www.sybex.com

HttpSession 141

 ArrayList stockList = (ArrayList)e.getValue();

 Iterator iter = stockList.iterator();

 while(iter.hasNext()) {

 String symbol = (String)iter.next();

 ServletContext context

 = session.getServletContext();

 Connection con = (Connection)

 context.getAttribute(“Connection”);

 // Write email address and symbol to database

 // if they don’t already exist.

 }

 }

 public void attributeRemoved(HttpSessionBindingEvent e)

 {}

 public void attributeReplaced(HttpSessionBindingEvent e)

 {}

}

The user selects the symbol XLNX, which creates a Stock attribute
whose value is a cumulative list of all symbols selected during the session.
Assuming this is the first symbol selected, the addition of a new attribute
prompts the server to notify the HttpSessionAttributeListener by calling
its attributeAdded(…) method. By using the HttpSessionBindingEvent
object, we are able to get the value of the new attribute and use the connec-
tion acquired from the context to then write the e-mail address and symbol
to a database. Another servlet can query the database when information
about the symbol changes to e-mail interested parties about latest news.
In general, this listener acts as a mediator to respond to session attribute
changes.

It is important to remember that a session can continue to exist after a trans-
action is complete. The user might still want to start a new transaction. When
this happens, attributes can be replaced, removed, and then added again.

Attribute changes to a ServletContext or an HttpSession object can
occur concurrently. Because containers are not required to synchronize the
listener notifications, it is possible to have one notification corrupt the data
of another. Consequently, the developer must maintain the integrity of the
attribute values when coding the listener classes.

http://www.sybex.com

142 Chapter 4 � The Servlet Container Model

HttpSessionBindingEvent

When an action takes place with respect to a session’s attributes, an
HttpSessionBindingEvent object is created. The HttpSessionBindingEvent
class extends the HttpSessionEvent class and adds methods to access
attribute information. This object stores a handle to the session, the attribute
name, and attribute value. The methods are as follows:

HttpSession getSession() This method returns a handle to the
session object.

String getName() This method returns the name bound or unbound
to the session.

Object getValue() This method returns the value that has been
added, removed, replaced, not bound, or unbound from the session.

The event is either passed to an HttpSessionAttributeListener or
HttpSessionBindingListener.

HttpSessionActivationListener

The HttpSessionActivationListener is used to maintain sessions that
migrate from one server to another. When a session is about to be moved to
a new server, it is passivated, or made inactive. After the session is on the new
server, it is brought back to life and activated. The implementing interface is
notified during both these events. This provides an opportunity to save or
store data across Java Virtual Machines (JVMs). A listener must implement
the following methods:

void sessionDidActivate(HttpSessionEvent se) This method is
called right after the session is activated. At this point, the session is not
yet in service.

void sessionWillPassivate(HttpSessionEvent se) This method
is called when a session is about to be passivated. At this point, the
session is no longer in service.

Let’s say you have a web application that stores customer transaction infor-
mation to a file. Due to the success of the application, the developers designed
a distributed environment by pooling multiple computers together to efficiently
handle resource usage. When one server is bombarded with hits, sessions are
moved to a new server, where more resources might be available. Now, if a
session is moved to a new server with a new JVM, the file that was originally
written to is no longer available. An HttpSessionActivationListener
ensures the data integrity of a session. When the session is about to be

http://www.sybex.com

HttpSession 143

passivated, sessionWillPassivate(…) is called. This method could be used
to read the contents of the file into the session object. When the session is trans-
ferred over, sessionDidActivate(…) is called. This method could be used to
read the content from the session and write it to a file on the new server. Here
is a code sample illustrating this example:

public class HttpSessionActivationHandler

 implements HttpSessionActivationListener{

 public void sessionDidActivate(HttpSessionEvent e){

 HttpSession ses = e.getSession();

 try {

 File f = (File)ses.getAttribute(“file”);

 byte[] fileByteArray = new byte[(int)f.length()];

 FileInputStream fr = new FileInputStream(f);

 fr.read(fileByteArray);

 ses.setAttribute(“file”, fileByteArray);

 fr.close();

 } catch (IOException ignore) {}

 }

}

 public void sessionWillPassivate(HttpSessionEvent e){

 HttpSession ses = e.getSession();

 try {

 byte[] byteFile = (byte[])ses.getAttribute(“file”);

 FileOutputStream fs =

 new FileOutputStream(“NewFile.txt”);

 fs.write(byteFile);

 fs.close();

 sess.setAttribute(“file”, new File(“data.txt”));

 } catch(IOException ignore) {}

 }

}

An HttpSessionActivationListener is registered in the deployment
descriptor by using the listener tag. The process is almost exactly the same
as with other listeners. To enable the session to transfer to another server,
all target servers must mirror the original server. The listener must be
defined in the web.xml file for all possible servers. Remember, the activa-
tion method and passivation methods will probably be called on different
systems.

http://www.sybex.com

144 Chapter 4 � The Servlet Container Model

HttpSessionBindingListener

When a session attribute is added, removed, or replaced, the HttpSession
AttributeListener is notified. The HttpSessionBindingListener is very sim-
ilar in that it is notified when an object is bound or unbound to a session. The
difference between the two listeners is based on whether you would like to
handle the event change from the session’s perspective or from the object’s
perspective:

� The HttpSessionAttributeListener looks at all objects added to
the session. It manages all attribute changes for the session.

� The HttpSessionBindingListener lets the object know when it is
bound (added) or unbound (removed) from the session so it can
directly respond to the event.

When a session times out or is invalidated, objects are unbound from the
session. HttpSessionBindingListener is notified and HttpSessionAttribute
Listener is not.

The implementing class must define the following methods:

void valueBound(HttpSessionBindingEvent event) This method
identifies the session and notifies the object that it is being bound to
a session.

void valueUnbound(HttpSessionBindingEvent event) This
method identifies the session and notifies the object that it is being
unbound from a session.

A mail application could greatly benefit from this listener because it could
disconnect from the mail server when the session was invalidated.

In general, event listener classes are used to respond to changes made to the
servlet context and HTTP sessions. They are instantiated and registered in
the web container when the application is being deployed. An application can
have multiple listeners for each event type and the order of invocation can be
specified within the container. When the application is shut down, the con-
tainer will first invalidate a session and invoke session listeners and then
invoke context listeners to close the application.

http://www.sybex.com

Distributable Environment 145

Distributable Environment

A distributable environment, also known as clustering, utilizes multi-
ple back-end servers to distribute processing responsibilities. This technique
promotes efficiency and dependability. With multiple servers to handle
requests, the application can manage a large number of simultaneous requests

EEI’s Mail Application

In an attempt to offer employees the ability to check their company e-mail
while off site, Educational Edge, Inc. (EEI) created a web mail application.
Soon after the program was released, however, a problem began to occur:
the technical department was consistently notified that users were having
problems logging back into the system after their sessions timed out.

Apparently, employees were logging into the application and then letting it
sit idly until their session was invalidated. The application was not designed
to close the connection on a timeout, and unfortunately the destruction of
the session did not automatically close network connections. If a user tried
to log back into the application, they were unable to establish a connection
because the old one was not yet closed. To ensure the integrity of users’
mail, most mail applications do not allow users to have multiple sessions
alive. Consequently, the connection had to be manually closed within the
application code.

The developers worked on a new version that created an HttpSession
BindingListener object. In the valueUnbound(…) method, the connection
was closed and the problem resolved. It is also important to note that the
HttpSessionBindingListener is usually implemented in one of the main
servlet classes, and not in a class written specifically as a listener. In this
manner, the mail servlet class would know when it was bound or unbound
to the session and could respond accordingly. In general, this listener is
most effective when resources need to be cleaned up or established as a
result of objects being bound and unbound from a session.

http://www.sybex.com

146 Chapter 4 � The Servlet Container Model

on different systems. When one machines crashes, requests can be redirected
to another server to keep the application alive.

The benefits seem to warrant that all systems be configured to run in
a distributed environment. This, however, is not the case. Designing a
robust system is more complicated than creating an application that runs on
one system. In addition, more systems are costly. The hardware and software
prices for the servers increase the cost of the application almost twofold for
each additional layer or cluster. The question is whether the cost is worth the
performance benefits. Unfortunately, the performance benefits are enjoyed
only under extreme loads. If the application doesn’t receive a lot of hits and
the current system can handle the requests, there is no need to forward or
transfer loads to different resources. Now, if the system has high visibility
and is accessed heavily, the cost is negligible compared to the benefits gained
from a dependable system. Imagine the profits lost from a system that is not
accessible. Also, the speed of processing could bring in larger profits that
would pay for the costs of a robust system and then some.

If you choose to create a distributed system, you should keep some design
considerations in mind. The application is no longer run on one JVM; there
is no longer one servlet context or one servlet instance. As a result, some rules
must be considered when developing the application:

First, variables must be handled differently. In fact, instance and static
variables should be avoided. Imagine a servlet that stores a counter to
measure how many times it is accessed during its lifetime. If the counter is an
instance or static variable, the following applies:

Instance variable The variable will measure only the number of times
that specific instance is accessed. Each servlet will generate a different
value.

Static variable The variable is shared among all instances—within the
same JVM. In a distributed environment, the static variable cannot be
accessed by another JVM.

Keep in mind that the server might create multiple instances of a servlet for
pooling, threading, or reloading purposes.

To prevent problems, the variable could be stored to an external resource,
such as a database, and accessed by each servlet instance to update and
access the value. If the variable applies to the session, it can be set as an
attribute rather than a variable.

http://www.sybex.com

Distributable Environment 147

Second, the ServletContext should not store state. Remember, a
context provides the servlet access to the server and container information.
Multiple JVMs mean there are multiple contexts, and their data will differ
depending on location. When a session is transferred to another server as a
part of resource management, the servlet context is left behind and a new
context is created. Again, the data you would consider storing in a context
should also be placed in an external resource such as a database.

Third, HttpSession objects must also be handled with distribution in
mind. Because a session might be migrated between different systems, all
associated objects must be transferable. For example, an object that imple-
ments java.io.Serializable makes it portable. If an object contains data
that cannot be transferred, for example, Thread objects, the session will not
be activated in its correct form when it attempts to come alive on the new
server.

Fourth, files should also be handled differently. In a distributed environ-
ment, you are not guaranteed the location of the servlet. Consequently, it
is preferable and more reliable to access files by using a path relative to
the context, rather than the server. The encouraged approach is through the
getResource(…) method of the ServletContext: getServletContext()
.getResource(String path). Because the file is packaged with the appli-
cation, it is accessible from the same location (the relative path to the
application’s context directory) regardless of the server.

Finally, threading must be considered. Synchronization is a locking mech-
anism used to ensure that data cannot be accessed by multiple requests. The
only problem is that synchronization applies to only one JVM. Synchroni-
zation cannot be guaranteed in a distributed environment.

Deployment Descriptor

Developing an application to run in a distributable environment requires
careful consideration on how to handle attributes and path information.
Writing code that deals with such issues is the first step in enabling your
application to run between multiple systems. The second step is to modify
the web.xml file to include a tag indicating that the application is suited for
such an environment.

Marking the deployment descriptor enables the server to deploy the
application across multiple back ends. This is done by placing an empty
<distributable/> tag between the application’s description and context
parameters.

http://www.sybex.com

148 Chapter 4 � The Servlet Container Model

Without this empty tag, the application is non-distributable by default.
The addition of the tag indicates the possibility for the application to be split.

<web-app>

 <description…> </description>

 <distributable/>

 <context-param>… </context-param>

 …

</web-app>

Marking an application distributable does not guarantee that the appli-
cation will be split between multiple systems. It indicates only that the
application is capable of being split between multiple machines.

Distributed Containers

At this point, we’ve discussed how to write an application that can run on
more than one server and how to modify the DTD to notify the server of the
potential environmental behaviors. Now you’re ready to look at the different
kinds of container types available to manage distributed applications.

There are four types of container support. It’s important to understand
the different types in order to know what behaviors to expect. A complex
application that performs multiple operations and is likely to receive many
concurrent hits might require a more robust server, whereas a simple
application that displays sport statistics might require only a simple server.
The type of container selected is heavily dependent on the amount of
thread-safety you are looking to obtain. Table 4.2 displays the functionality
options.

T A B L E 4 . 2 Container Support

 Clustering Session Migration Session Failover

Type 1

Type 2 X

Type 3 X X

Type 4 X X X

http://www.sybex.com

Distributable Environment 149

Each container has its own set of distinctive features, which in turn
produces variation in each session. The following list describes the four
containers in greater detail:

Type 1 This container does not support clustering and is usually a stand-
alone application that ignores all distributed information. The stand-alone
Tomcat server falls in this category.

Type 2 Non-session requests are randomly distributed, whereas
session-related requests are tied to their originating server. The session
is tied to a particular host. Because sessions are not transferred, they can
contain data that is nontransferable. The disadvantages of this container
are as follows:

Sessions cannot to be migrated to an underutilized server.

A crash will also result in a broken session.

Type 3 In addition to the features defined in the type 2 containers,
a type 3 enables sessions to be migrated to underutilized servers to
improve load balancing. The specification guarantees that the session
will migrate only between requests. This feature prevents concurrency
issues. Because session migration is a feature, the session’s data must be
transferable.

Type 4 This container builds on type 3 and adds the capability to dupli-
cate the contents of a session. When an individual component crashes, the
user’s session is not necessarily destroyed because the data can be saved
and transferred.

Generally ServletContext and HttpSession are associated with the
JVM servicing the session requests. Because distributed containers are not
required to propagate either object to another JVM, you cannot rely on
this functionality if the container simply states, it is compliant with the
2.3 specification.

The final important note is to understand how listener classes are
handled in a distributed environment. Basically, there is one listener class
instance per listener class defined in the deployment descriptor per JVM.
If a session is transferred to another server, the application in the new
environment should contain a separate listener instance to handle session
events.

http://www.sybex.com

150

Chapter 4 �

The Servlet Container Model

Filters

I

n photography, a single image can be changed greatly by the filter used
to capture the picture. One filter might soften edges, while another might
enhance the color contrast by hardening edges. Another might add the date
and author signature to the photo. These alterations do not change the fun-
damental image; instead, they provide subtle enhancements. A filter is often
a thin layer of some sort that provides subtle changes to a particular object.
In this example, the object is a picture.

In the Java world, a filter can be applied to one or more servlets/JSPs or
application files. Imagine that a client selects an image in JPEG format and
sends it to a servlet to modify. If the servlet can handle only TIF files, a filter
can be used to handle the conversion before the servlet even accesses the
image. Another example of filter use is to compress the response output
stream to improve bandwidth utilization. The filter could use the request
headers to check whether the client (browser) supports compression, and if
so, wrap the response object with a custom writer or output stream object
that handles compression. The stream would then eliminate unnecessary bits
and transfer content at a faster rate. Filters can be used to encrypt or decrypt
data, to log and audit activity, and to trigger events. The options are endless.

Filters are covered in the exam. Currently, the topic is not listed as an exam
objective, but you can expect to find a few questions about this subject matter.
Consequently, in this section, we will discuss how a filter fits into the servlet life
cycle and all the elements necessary to create a functional and effective filter.

The Life Cycle

A

filter

 is an object that can transform a request or modify a response. It
can preprocess a request before it reaches a servlet and it can postprocess a
response after it leaves a servlet. Figure 4.4 displays how the filter intercepts
the request and response objects.

F I G U R E 4 . 4

The filter life cycle

Before a request reaches a servlet, a filter can intercept the request and
examine its contents. Besides examining the request, the filter can modify

ServletBrowser Filter

request

customResponse response

customRequest

http://www.sybex.com

Filters

151

either the request headers or the request data by customizing the request. It
does this by wrapping its own request object around the original request.
After the filter completes its task, it then forwards the newly customized
request to the servlet.

The servlet will then perform its tasks and potentially generate a response.
In such a case, the response can be caught by the same or different filter. After
the filter intercepts the response, it can modify the response headers or response
data by again wrapping a filter response object around the original response
to create a customized object. This customized object is then sent to the client.

When a filter intercepts a response object, is cannot alter the output stream
information if the output stream was closed by the servlet. As a result, you are

encouraged to have a servlet

flush()

 a stream rather than

close()

 it.

In simple terms, the process is as follows:

1.

A client sends a request.

2.

The filter intercepts the client’s request.

3.

The filter examines and can modify the request headers and request
data by using its own custom request to wrap around the intercepted
request object.

4.

The filter propagates the request to the servlet.

5.

The servlet generates a response and flushes it.

6.

The filter intercepts the response.

7.

The filter can modify the response headers and response data by using its
own custom response to wrap around the intercepted response object.

8.

Once complete, the filter sends the newly filtered response to the client.

The Filter

Filters are quite easy to create. The difficulty lies in the logic used to manip-
ulate the content. To create a filter, you must follow three simple steps. The
filter class must:

1.

Implement the appropriate interface

2.

Define its methods

3.

Be declared within the deployment descriptor

http://www.sybex.com

152

Chapter 4 �

The Servlet Container Model

Creating the Filter

All filters must implement the

javax.servlet.Filter

 interface. This inter-
face defines three abstract methods that are called during different points of
the filter’s life cycle. They include:

�

public void init(

FilterConfig config

)

�

public void doFilter(

ServletRequest req, ServletResponse
resp, FilterChain chain

)

�

public void destroy()

When a filter is activated, the first method that is called is

init(

FilterConfig

config

)

. This method is used to prepare or initialize
the filter for service. The method is passed a

javax.servlet.FilterConfig

object, which contains deployment descriptor information and a handle to the
application’s context. This object can be used to:

�

Retrieve the filter name defined within the deployment descriptor

�

Retrieve the initialization parameters defined within the deployment
descriptor

�

Return a reference to the

ServletContext

 object associated with the
request or response

Most commonly, the logic within the

init(…)

 method consists of saving
a local instance of the

FilterConfig

 object for later use. If the filter requires
access to parameters before it completes the initialization process, the

FilterConfig

 object can then be used to get the information by using the

getInitParameter(

String

name

)

 method.
After the

init(…)

 method completes, the

doFilter(

ServletRequest

req,

ServletResponse

resp,

FilterChain

chain

)

 method is called next.
This method represents the body of the filter. It handles any conversions, pro-
cessing, or alterations that must be done before the request object is accessed by
the servlet or after the response object is sent from the servlet. To accomplish
its task, the filter can use the

ServletRequest

 object to invoke methods such
as

setAttribute(…)

 to change the request characteristics. Header data can
also be accessed or changed by casting the request to an

HttpServletRequest

object (assuming it is passed to an

HttpServlet

). Similarly, a parallel process
can be followed to alter the

ServletResponse

 object.
A filter should be written to accomplish a particular task related to the

request or response. It should not be written to accomplish

many

 tasks.

http://www.sybex.com

Filters

153

Instead, multiple filters should be created to tackle each task, and then
they should be chained. Chaining filters means one filter calls the next.
The process is managed by using the

FilterChain

 handle passed to the

Filter

 object’s

doFilter(…)

 method. A

FilterChain

 is an object pro-
vided by the servlet container. Its purpose is to invoke the next filter in
the chain, or if the calling filter is the last filter in the chain, to invoke the
resource (for example, the client or servlet) at the end of the chain. Access
to this object enables one filter to be chained to another. The interface
has one method:

doFilter(

ServletRequest

req,

ServletResponse
resp

)

. If the filter uses another filter, the current filter can call

chain
.doFilter(req,

resp)

, passing the current request and response object
to the next.

The last method called is

destroy()

. This method is called by the web
container to indicate that the filter will be removed from service. If the filter
uses other resources, you might want to deallocate memory to prepare the
filter object for garbage collection.

Let’s consider the following example. Imagine you have a website that
utilizes hundreds of JSP pages, which contain information that has copyright
restrictions. Instead of manually inserting the legal statement at the end of
each page, a filter class can be added to take care of this task. Listing 4.2
provides the code necessary to create such a filter.

Listing 4.2: Creating a Filter to Append

package data;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class CopyrightFilter implements Filter {

 private FilterConfig config;

 String year;

 public void init(FilterConfig config)

 throws ServletException {

 this.config = config;

http://www.sybex.com

154

Chapter 4 �

The Servlet Container Model

 year = config.getInitParameter(“date”);

 }

 public void doFilter(ServletRequest req,

 ServletResponse resp,FilterChain chain)

 throws IOException, ServletException {

 chain.doFilter(req, resp);

 PrintWriter out = resp.getWriter();

 out.println(“
Copyright © ” + year +

 “ All legal rights are reserved.”);

 out.flush();

 }

 public void destroy() {}

}

Defining the Deployment Descriptor

After the filter is created, it must be added to the deployment descriptor in
order for the container to place the filter into service and to know when to
invoke the appropriate filter with the right servlet. The first set of tags that
must be included are

filter-name

 and

filter-class

. The

filter-name

tag is used to provide a general name for the filter. The name is linked to the
actual class name defined within the

filter-class tags. Another tag,
init-param, is optional. It is used to pass initialization parameters to the
filter. The following code snippet shows the use of these tags:

<filter>

 <filter-name>copyrightFilter</filter-name>

 <filter-class>data.CopyrightFilter</filter-class>

 <init-param>

 <param-name>date</param-name>

 <param-value>2002</param-value>

 </init-param>

</filter>

The next step required is to map the filter to the appropriate servlets or
JSPs. You have two options. The first approach links the filter to a single

http://www.sybex.com

Summary 155

servlet (assuming you are using this filter on an actual servlet) by using
the servlet-name tag, as shown in the following code sample:

<filter-mapping>

 <filter-name>sampleFilter</filter-name>

 <servlet-name>myServlet</servlet-name>

</filter-mapping>

The second approach offers more flexibility. It links the filter to a URL
pattern. This enables the developer to apply the filter to a group of servlets,
JSPs, or any static content. Using the url-pattern tag, you can identify the
files or types of files to which the filter is to be applied. The following code
uses the filter example we discussed to append the copyright statement to all
pages that end with .jsp:

<filter-mapping>

 <filter-name>copyrightFilter</filter-name>

 <url-pattern>/*.jsp</url-pattern>

</filter-mapping>

There is an order to which the container processes filter-mapping tags.
Filters using the url-pattern tags are processed first, in the order they
appear in the deployment descriptor; then the servlet-name tag filters are
run—again, in the order they appear in the deployment descriptor.

The filter and filter-mapping tags must be defined before any servlet tags.
Listener tags are defined in this same region.

Summary

This chapter focused on features that are associated with or handled
by the container. We began by explaining the purpose of a ServletContext
object and how it links the application to the container. By using the object’s
initialization parameters, the application components can acquire config-
uration information from the container. Another feature of the context
is its capability to store attribute values. These values are set either in the

http://www.sybex.com

156 Chapter 4 � The Servlet Container Model

container or, the servlet code. Attributes enable objects to be bound to the
context. We then discussed the two listener interfaces used to receive
notifications of changes to the context: the ServletContextListener,
which is notified when the context is created or destroyed, and the
ServletContextAttributeListener, which is notified when an attribute
is added, removed, or replaced.

The next major topic was HttpSessions. Sessions hold transaction data
that is captured while a client accesses the application for a period of time.
Attributes are used to get and set information into the session object that is
stored on the server end. By using session objects, the application can reduce
the need to cache long-term data or have clients repeat data transmissions.
Four listeners exist for session objects: The HttpSessionListener is noti-
fied when a session is created or destroyed. Like the context, there exists
an HttpSessionAttributeListener that is notified when attributes are
added, removed, or replaced. The HttpSessonActivationListener is used
for notification when a session is being moved between systems. It receives
an HttpSessionEvent when the session is activated or passivated. The final
listener is the HttpSessionBindingListener, which notifies a specific
object when it is being bound or unbound to the session. It passes an
HttpSessionBindingEvent that provides methods for access to the session
handle, and the name or value for the attribute being bound to or unbound
from the session.

The chapter concluded by discussing necessary considerations for an
application that exists within a distributable environment. We pointed out
how some containers offer this flexibility and some do not. If the application
can be distributed, a few concepts should be incorporated into the servlet
code. The context should avoid maintaining state because a new context is
associated with a session if the session is moved to a new system. When a ses-
sion is moved, only listeners on the system where the session resides will be
notified of changes. Attributes or external resources are usually better ways
to store object data.

As for the deployment descriptor, all listeners are defined by using the
listener tag and the listener-class tags. The container uses reflection
to determine which listener the class actually implements. The order in
which the listeners are defined is the order they will be invoked, unless the
application is closing. In that case, the session listeners are called first, and
then the context.

http://www.sybex.com

Exam Essentials 157

Exam Essentials

Be able to identify the important characteristics of the ServletContext
initialization parameters. Initialization parameters are used to define
configuration data that applies to the entire web application. The methods
used to access the parameters are available in the ServletContext class.
Those methods are as follows:

String getInitParameter(String name)

Enumeration getInitParameterNames()

Be able to identify the important characteristics of the ServletContext
Listener. The ServletContextListener is notified when a context is
created or destroyed. An implementing class must define the following
two methods:

void contextDestroyed(ServletContextEvent sce)

void contextInitialized(ServletContextEvent sce)

When an event occurs, the listener receives a ServletContextEvent
object that defines the context. By using the ServletContextEvent, you
can get the actual context using the getServletContext method.

Be able to identify the important characteristics of the ServletContext
AttributeListener. A context attribute is used to bind objects to a
web application. By using the ServletContext’s get and set methods,
you can define attributes:

Object getAttribute(String name)

void setAttribute(String name, Object value)

The ServletContextAttributeListener is notified when a context
attribute is added, removed, or replaced. An implementing class must
define the following methods:

void attributeAdded(ServletContextAttributeEvent scab)

void attributeRemoved(ServletContextAttributeEvent scab)

void attributeReplaced(ServletContextAttributeEvent scab)

Be able to identify the important characteristics of the
SessionAttributeListener. The SessionAttributeListener is
notified when a session attribute is added, removed, or replaced. An
implementing class must define the following methods:

void attributeAdded(HttpSessionBindingEvent se)

http://www.sybex.com

158 Chapter 4 � The Servlet Container Model

void attributeRemoved(HttpSessionBindingEvent se)

void attributeReplaced(HttpSessionBindingEvent se)

Be able to identify the WebApp deployment descriptor element names that
declare the ServletContext initialization parameters. ServletContext
initialization parameters are defined either directly in the container or in
the web.xml file by using the following tags:

<context-param>

 <param-name></param-name>

 <param-value></param-value>

</context-param>

The context parameter is defined before the servlets in the web.xml file.

Be able to identify the WebApp deployment descriptor element
names that declare the ServletContextListener, ServletContext
AttributeListener, and HttpSessionAttributeListener. All
event listeners use the same deployment descriptor tags. They are as
follows:

<listener>

 <listener-class>com.MyServletContextHandler
 </listener-class>

</listener>

<listener>

 <listener-class>com.MyServletContextAttributeHandler
 </listener-class>

</listener>

Distinguish the behavior of servlet context initialization parameters in a
distributable environment. In a distributable environment, the servlet
context should avoid maintaining state. Instead, data should be stored
and accessed through an external resource such as a database. Because
the parameters are defined in the container or the web.xml file, you
cannot be guaranteed that each system will be configured exactly
the same.

Distinguish the behavior of the ServletContextListener,
the ServletContextAttributeListener, and the
SessionAttributeListener in a distributable environment. An
event listener instance is mapped directly to the listener defined within
the deployment descriptor in a particular JVM. In a distributable environ-
ment, the listener must exist on the server system to ensure attribute and

http://www.sybex.com

Key Terms 159

context integrity. A JVM on one system cannot notify a listener on
another system. Consequently, the listener must be located on the target
server in order to receive context or session events.

Key Terms

Before you take the exam, be certain you are familiar with the follow-
ing terms:

clustering listener

context object scope

distributable session

event synchronization

filter

http://www.sybex.com

160 Chapter 4 � The Servlet Container Model

Review Questions

1. Which of the following is false regarding ServletContextListeners?
(Choose all that apply.)

A. They are notified when a servlet context is initialized.

B. They are notified when a servlet context is loaded.

C. They are notified when a servlet is destroyed.

D. They are notified when a context attribute is added.

2. Which of the following statements is false?

A. The FilterChain object is used to call the next filter or servlet.

B. Filters can alter the attributes of the ServletContext for the
servlet it is filtering.

C. A filter is called before and after a servlet is invoked.

D. A Filter object can be applied only to servlets and JSPs.

3. Which of the following deployment descriptor tags is used for listing
context initialization parameters?

A. param-name

B. context-param

C. context-name

D. context-attribute

E. None of the above

4. Which of the following methods returns an enumeration of all initial-
ization parameters and their values?

A. getInitParameterNames()

B. getInitParameterValues()

C. getInitParameters()

D. None of the above

http://www.sybex.com

Review Questions 161

5. Which of the following interfaces is called when a context is
destroyed?

A. ServletContextDestroyedListener

B. HttpServletContextListener

C. ServletContextListener

D. HttpSessionActivationListener

6. Which of the following methods is called when a context is initialized?

A. contextInitialized(ServletContextEvent e)

B. contextInitial(ServletContext e)

C. contextInitialize(ServletContext e)

D. contextInitialize(ServletContextEvent e)

7. Which of the following statements is false?

A. The contextInitalized(…) method is called when a web appli-
cation’s context is created.

B. The contextInitialized(…) method does not need to complete
for servlet requests to be processed.

C. The contextInitialized(…) method is used to initialize data
shared by all servlets in the application.

D. You can have more than one ServletContextListener object
per application.

8. A session can be created under which of the following circumstances?

A. When the container starts

B. When a request is first sent to a servlet

C. When a response is sent back to a client

D. When a client accesses a website

http://www.sybex.com

162 Chapter 4 � The Servlet Container Model

9. Which of the following listeners is invoked when a session is created?

A. HttpSessionAttributeListener

B. HttpSessionBindingListener

C. HttpListener

D. HttpSessionListener

10. Which of the following events enables you to retrieve the name and
value of an attribute?

A. HttpSessionEvent

B. HttpEvent

C. HttpAttributeEvent

D. HttpSessionAttributeEvent

E. HttpSessionBindingEvent

11. Which of the following listeners is called after a session is passivated?

A. HttpSessionListener

B. HttpSessionActivationListener

C. HttpSessionPassivateListener

D. None of the above

12. Which of the following statements is true?

A. The listener tag is used to define all context and session listeners.

B. The listener interface name must be defined within the deployment
descriptor.

C. The HttpSessionActivationListener must be defined within
the originating server only.

D. The listener-name tag is used to define the listener class.

http://www.sybex.com

Review Questions 163

13. How are listeners registered to the server?

A. The servlet must call the server’s addXXXListener and pass a
reference to the listener.

B. The interface-name tag is used to list the associated interface in
the deployment descriptor.

C. The server uses reflection to determine which listener interface is
associated with which class.

D. None of the above

14. Which of the following interfaces is notified when a session times out?

A. HttpSessionListener

B. HttpSessionAttributeListener

C. HttpSessionBindingListener

D. HttpSessionActivationListener

15. Which of the following statements is false?

A. There is one listener instance per listener class defined in the
deployment descriptor.

B. Containers are required to propagate the servlet context and
session events to other JVMs.

C. In a distributed environment, the ServletContext objects should
avoid maintaining state.

D. Attribute listeners for the context and session objects can be
invoked concurrently.

http://www.sybex.com

164 Chapter 4 � The Servlet Container Model

Answers to Review Questions

1. B, D. A ServletContextListener is notified under two conditions:
when the context is initialized and destroyed. The ServletContext
AttributeListener handles attribute notification. Finally, a context
is not loaded; it is created.

2. D. When declaring a filter in the deployment descriptor, you must
identify which resources the container must associate with the filter.
The url-pattern has no limitations, and in fact, the filter can be
called before any static file. In such cases, you can add content but
can’t remove or change existing content because you do not have
access to that information.

3. B. The <context-name></context-name> tags are used to define
the name of a context initialization parameter. The <context-value>
</context-value> tags are used to define the value of a context
initialization parameter. Finally, the <context-param></context-
param> tags are used to list a context initialization parameter.

4. D. The only option that is a valid and existing method is getInit
ParameterNames(). Unfortunately, this method does not return
parameter names and values; instead, it returns a listing of all the
names. This enables the servlet to then filter through each name to get
the desired value.

5. C. The contextDestroyed(ServletContextEvent e) method of
the ServletContextListener interface is invoked when a context is
about to be destroyed. The method allows resource cleanup before the
context is removed from memory.

6. A. A ServletContextEvent object is passed to the context
Initalized(…) method when the context is first created.

7. B. When the context for a web application is created, the context
Initialized(…) method is, in fact, invoked. The method must com-
plete before any servlet requests can be processed, because the data is
shared by all servlets. Finally, there is no limitation on the number of
listener objects you can have. The server will simply invoke all listeners
that apply.

http://www.sybex.com

Answers to Review Questions 165

8. B. A session is associated with a particular user. Consequently, a
session cannot be created without a client. When a request is sent, the
servlet can use the getSession(boolean) method to either access
the current session or create a new one.

9. D. An HttpSessionListener defines two methods: session
Created(…) and sessionDestroyed(…). The sessionCreated(…)
method is invoked when a client session is created.

10. E. An HttpSessionEvent gives you access only to the session. To
gain access to the name and value associated with an attribute, use the
HttpSessionBindingEvent object. The other classes listed do not exist.

11. D. The HttpSessionActivationListener is called before a session
is passivated. There isn’t much that can be done after the session is dis-
abled, so no listener is notified in that circumstance.

12. A. All listeners are defined by using the listener tag in the deployment
descriptor. The server uses reflection to determine which listener to
apply the class toward. As for HttpSessionActionListeners, the
implementing class must be defined in all servers that have access to
the server. The listener class is defined with the tag listener-class,
not listener-name.

13. C. The server interrogates the class defined within the listener tag
and uses reflection to determine the listener interface that the class uti-
lizes. The server, not the servlet, handles the association between the
listener and server.

14. C. When a session is invalidated through a timeout, the HttpSession
BindingListener for that object is notified to identify the object is
being removed or unbound from the session.

15. B. Compliant containers are not required to handle distributable
applications. Consequently, it is not mandatory that containers for-
ward context or session events to other JVMs.

http://www.sybex.com

Chapter

5

Handling Exceptions

THE FOLLOWING SUN CERTIFIED WEB
COMPONENT DEVELOPER FOR J2EE
PLATFORM EXAM OBJECTIVES COVERED
IN THIS CHAPTER:

�

4.1 For each of the following cases, identify correctly

constructed code for handling business logic exceptions, and

match that code with correct statements about the code’s

behavior:

�

Return an HTTP error using the

sendError

 response method
�

Return an HTTP error using the

setStatus

 method

�

4.2 Given a set of business logic exceptions, identify the

following:

�

The configuration that the deployment descriptor uses to
handle each exception

�

How to use a

RequestDispatcher

 to forward the request
to an error page

�

Specify the handling declaratively in the deployment
descriptor

�

4.3 Identify the method used for the following:

�

Write a message to the WebApp log
�

Write a message and an exception to the WebApp log

http://www.sybex.com

I

n an ideal world, all applications could run without encountering
problems. In reality, however, applications have little control over user input
or environmental effects. Consequently, all programs, especially those that
are networked, can falter. With this in mind, developers must take a proac-
tive approach toward error handling when developing code. The code must
anticipate potential problems, notify the client, log the issue, limit damage,
and offer recovery alternatives. In this chapter, we will discuss the various
ways to handle common application errors. They include:

�

How to notify the client of errors or status changes

�

How to use and create error pages

�

How to log messages

�

How to define servlet exceptions

Problem Notification

N

o matter how well an application is written, problems will always
occur. Outside factors are constantly changing and can cause connections
to be broken, files to be moved, or invalid user data to be entered. Under
such circumstances,

exceptions

 provide a way to resolve, log, and commu-
nicate the problem.

When a problem occurs within a servlet, the developer must decide how
the application should proceed. Should it return an error and continue? Or
should it return an error page and stop the execution of the application? If
an error page is returned, who will develop it—the server or the application?
How will the application locate a custom error page? These are the questions
a developer must answer and consider when writing efficient servlets.

http://www.sybex.com

Problem Notification

169

In this section, we will cover the methods and procedures necessary to set
error codes and return error pages. But before we discuss the more advanced
methods of error handling, let’s look at the basic approach. Imagine a site
that requires the user to select an item from a list. Each element in the list rep-
resents a separate file that exists elsewhere. If that file cannot be located, we
might have a problem. Listing 5.1 provides HTML code for a form contain-
ing such a list. The image that follows is the HTML output generated from
the code.

Listing 5.1: index.html

<HTML>

 <BODY>

 <FORM ACTION='servlet/InventoryServlet' METHOD='GET'>

 <P>Select the desired inventory list:</P>

 <SELECT NAME='inventoryList'>

 <OPTION VALUE='/inventory/Shampoos.html'>

 Shampoo List

 <OPTION VALUE='/inventory/Conditioners.html'>

 Conditioner List

 <OPTION VALUE='/inventory/Products.html'>

 Products List

 </SELECT>

 <P> <INPUT TYPE='submit' VALUE='GO!'

 NAME='button'>

 </P>

 </FORM>

 </BODY>

</HTML>

After the user selects an item, the form triggers a request to the

InventoryServlet

 and attempts to retrieve the file associated to the
selected item. Listing 5.2 displays the servlet’s code.

http://www.sybex.com

170

Chapter 5 �

Handling Exceptions

Listing 5.2: InventoryServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class InventoryServlet extends HttpServlet {

 protected void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType(“text/html");

 PrintWriter out = res.getWriter();

 String filePath = req.getParameter(“inventoryList");

 String theFile=””;

 try {

 theFile=getFile(filePath);

 } catch(FileNotFoundException e) {

 out.println("File not found");

 }

 out.println("<HTML><BODY>");

 out.println("<P> The File content is: “ +

 theFile + “</P>");

 out.println("</BODY></HTML>");

 }

 public String getFile(String path)

 throws FileNotFoundException {

 String theFile="";

 try {

 InputStream is =

 getServletContext().getResourceAsStream(path);

 BufferedReader br =

 new BufferedReader(new InputStreamReader(is));

 while (br != null) {

 theFile += br.readLine() + '\n';

 }

http://www.sybex.com

Problem Notification

171

 } catch (Exception e) {

 throw new FileNotFoundException();

 }

 return theFile;

 }

}

If the file cannot be found, a

FileNotFoundException

 is caught,
whereby you write a

String

 message to the output stream Writer explaining
what went wrong. In this simple example, the page continues to execute,
and the error message merely appears before the response content. The
following image displays the resulting output.

Notice that the message is incorporated with the output stream data.
Although the page serves its purpose of informing the client, it isn’t the most
aesthetic or flexible approach.

sendError

Instead of simply sending debugging messages to the browser to display, it
might be more appropriate to return an error page. Web servers are able to
generate default error pages if and when a particular error is sent. In this sec-
tion, we will discuss how to send an error and content to the web server for
an automatic error page response.

The

HttpServletResponse

 class provides a

sendError(…)

 method
that gives the developer an opportunity to set an error status code for the
response header and enables the servlet to replace the response body with
a server-specific page explaining the error. The method signature is as
follows:

public void sendError(int sc)

public void sendError(int sc, String msg)

http://www.sybex.com

172

Chapter 5 �

Handling Exceptions

The first parameter is an integer value defining the error code for the type
of problem that occurred. The second parameter is a

String

 object used to
provide a custom message to the server-generated error page. The message
parameter is ignored if a custom error-page is provided for the passed-in sta-
tus code. We will discuss that in more detail in the “Error Pages” section.

Back to our example: instead of writing to the output stream when an
error occurs, you can now set the

sendError(…)

 status and message to the
response object, as shown here:

…

try {

 theFile=getFile(filePath);

} catch(FileNotFoundException e) {

res.sendError(

res.SC_NOT_FOUND,

 “The name of the file that could not be found is: “

 + filePath

)

;

}

…

The provided error page is server dependent, but usually includes the
error code and an explanation. Depending on the error, the message entered
in the

sendError(…)

 method might or might not be included in the auto-
matically generated page. The image might look similar to the following
graphic.

If the error code is changed to

410

 or

SC_GONE

, the following output
appears. Notice how this page includes the

sendError(…)

 message.

http://www.sybex.com

Problem Notification

173

Remember, the server has the choice to include or exclude the
message. For some errors it might include the message, and for others
it might not.

When using the

sendError(…)

 method, three things should happen:

�

An error response is sent to the client by using the specified status
code.

�

The servlet’s response body is replaced with an HTML-formatted
server error page containing the specified message.

�

The content type is set to

text/html

, leaving cookies and other
headers unmodified.

A response is committed after it is sent to the client. When the

sendError(…)

method is used, the response is considered committed and should no longer
be written to. If the response is already committed and

sendError(…)

 is
called, an

IllegalStateException

 should be thrown. Unfortunately, not
all vendors or versions follow this standard. For example, iPlanet 4.

x

 breaks
this rule; however, it is supported by iPlanet 6.

x

.
If a condition occurs that is not a problem, but just a status notification,

you can use the

setStatus(

int

statusCode

)

 method to modify the
response header. This topic is covered next.

setStatus

The

HttpServletResponse

 class provides a

setStatus(…)

 method that
gives the developer an opportunity to set the status code to notify the client
of the when there is no error for the response header. The method signature
is as follows:

public void setStatus(int statusCode)

This method sets the status by using a specified number or constant

SC_

XXX value defined in the HttpServletResponse class. The coding
preference, however, is to use the constant value rather than hard-coding
a number.

There is a fine difference between the setStatus(int statusCode) method
and the sendError(int errorCode) method: the setStatus(…) method does
not generate an automatic error response page, whereas sendError(…) does.
In fact, if you use setStatus(…) to define an error, then the servlet is

http://www.sybex.com

174 Chapter 5 � Handling Exceptions

completely responsible for generating the response. The body can be text based,
a generated image, or anything else appropriate. If an error page is not config-
ured, a server-dependent Page Not Found message will appear. Later we will
discuss how to create custom error pages.

Stylistically, setStatus(…) should be used for non-errors, such as SC_OK
or SC_MOVED_TEMPORARILY, whereas sendError(…) should be used for
errors that are a part of the 400 and 500 series. A non-error is a flag that does
not indicate a critical problem.

When setStatus(…) is called to define a non-error, the status code is set
and the servlet code continues to process. When setStatus(…) is called to
define an error, the status code is set and an error page is sought in response.
If one is not found, a server-dependent Page Not Found message will appear.

Here is some sample code that shows how the setStatus(…) method
should be used:

…

try {

 theFile=getFile(filePath);

 res.setStatus(res.SC_OK);

} catch(FileNotFoundException e) {

 res.setError(res.SC_NOT_FOUND);

}

If all goes well, the status is set to SC_OK; if not, a server-generated error
page is created and sent to the client.

The setStatus(…) method is also useful when you have a servlet that takes
a long time to process. If written correctly, the servlet can be designed to
provide the client with intermittent updates on the state of the activity. If, for
example, a reload is required, a message notifying the client could be sent.

A call to the setStatus(…) method does not commit the response, but it
does cause the container to clear the response buffer (causing any previous
response body information to be erased). As a result, this method should be
called early in the development of a response. In addition to erasing the
response body, the container will also set the Location header but preserves
cookies and other headers. If the response is already committed, calls to
setStatus(…) are ignored.

http://www.sybex.com

Error Pages 175

Error Pages

Until now, we have relied on default error pages or raw text sent
to the output stream Writer as means of conveying problems to the client.
There are a few more error page options worth discussing. There are three
types of error pages:

� Server-generated pages

� Static custom pages

� Dynamic custom pages

The default behavior of setStatus(…) and sendError(…) generates an
error page formatted by the server. In this section, we will address how static
and dynamic custom pages can be created and their associated benefits. We
will also cover how request dispatching can be used to pass error-handling
responsibility to another servlet.

Static Error Page

A static error page is usually an HTML-formatted page that contains a
response to the occurring problem. Its information explains the problem, but
does not change. A status code is associated to the page through the deploy-
ment descriptor.

For example, imagine that you created an error page called 404.html. It
could be as simple as the following:

<HTML>

 <BODY>

 This is my error page for code: 404

 </BODY>

</HTML>

By using the error-page tag, you could cause the status code value of 404
to display your page 404.html.

<web-app>

 <error-page>

 <error-code>

 404

http://www.sybex.com

176 Chapter 5 � Handling Exceptions

 </error-code>

 <location>

 /errors/404.html

 </location>

 </error-page>

</web-app>

The error-code tag defines the status code for the problem. The
location tag defines the error file and its path. The value for the location
tag must begin with a forward slash (/) and it must refer to a resource
within the context. The following image shows the custom error-page
output.

It is important to know that entries in the web.xml file will override the
default server configuration error pages. If either sendError(404) or
setStatus(404) is called, the file 404.html located in the errors directory
of the context directory will appear. The benefit of static error pages is that
they provide standardized error responses for the entire application.

Dynamic Error Page

For a more flexible page response, you can create a dynamic error page.
Dynamic pages enable the message, the page, or the data to change depend-
ing on the set error code. Instead of using HTML pages, a servlet could be
written to handle errors. The server provides two servlet attributes to help
accomplish this task:

javax.servlet.error.status_code returns an Integer object
defining the error status code.

javax.servlet.error.message returns a String message, usually
defined by the second argument passed to the sendError(…) method.

http://www.sybex.com

Error Pages 177

A general-purpose error page must be defined within the location tag.
Here is sample code for web.xml:

<web-app>

 …

 <error-page>

 <error-code>

 404

 </error-code>

 <location>

 /servlet/ErrorServlet

 </location>

 </error-page>

 …

</web-app>

One dynamic page or servlet could be used for multiple error-codes; how-
ever, each error code must be specified in the DTD file. Also, each error code
must have its own <error-page>…</error-page> element entry.

Instinctively, you might have thought to reference the ErrorServlet by using
the following path: /contextDir/WEB-INF/classes/ErrorServlet. This, how-
ever, will not work because of permissions. Remember, you cannot directly
reference files within the /WEB-INF directory. For Tomcat, servlet classes can
be accessed from the /servlet directory.

For iPlanet and JRun, you can configure the servlet so the path /servlet
/ErrorServlet points to the default directory name /servlet under the con-
text root. These servers do not automatically map the /servlet directory to
the /WEB-INF/classes directory.

Listing 5.3 shows a sample servlet that generates a static error page when
invoked.

Listing 5.3: Custom Error Servlet

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

http://www.sybex.com

178 Chapter 5 � Handling Exceptions

public class ErrorServlet extends HttpServlet {

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException, ServletException {

 res.setContentType(“text/html”);

 PrintWriter out = res.getWriter();

 Integer code =(Integer)req.getAttribute

 (“javax.servlet.error.status_code”);

 String msg =(String)req.getAttribute

 (“javax.servlet.error.message”);

 out.println(“<HTML>”);

 out.println(“<BODY>”);

 out.println(“<H1>” + code + “</H1>”);

 out.println(“<H2>” + msg + “</H2>”);

 out.println(“<HR>”);

 out.println(“<I>Problem accessing “ +

 req.getRequestURI() + “</I>”);

 out.println(“</BODY></HTML>”);

 }

}

When sendError(…) or setStatus(…) is called for an error, an instance
of ErrorServlet will extract the status code and message from the method
call. It will then display that information in a custom error page.

Going back to our earlier example in which we attempt to locate the
file /inventory/Shampoos.html, let’s assume we are unable to do so, and
as a result create a message explaining which file could not be found.
The current servlet would need to create the message by extracting the file
name using req.getParameter(“inventoryList”) and then using the
ServletContext’s getResourceAsStream(String path) method to read
the path/filename value assigned to the parameter. If the servlet invokes the
following method:

res.setError(res.SC_NOT_FOUND, msg);

the output will result in a servlet-generated page.

http://www.sybex.com

Error Pages 179

This response page is simple, but shows you how dynamic pages can be
generated. You can create a more complex page that monitors error trends
to locate weaknesses in the system or application in addition to generating
error pages.

A dynamic page uses the web.xml file to locate an error servlet associated
to a defined error-code. If, however, your servlet would like to pass an
error to a specific servlet to handle, given a situation rather than an error
code type, you would need to use a RequestDispatcher. We will discuss
this technique next.

Passing the Error

A servlet can handle its own errors or it can pass off the responsibility to
another servlet to handle. The RequestDispatcher can be used to forward a
request to an error page:

…

try {

 theFile=getFile(filePath);

} catch(FileNotFoundException e) {

 String display = “/servlet/ErrorServlet”;

 RequestDispatcher dispatcher =

 req.getRequestDispatcher(display);

 dispatcher.forward(req, res);

}

We have shown you how a basic RequestDispatcher works in Chapter 2,
“The Servlet Model.” When used for error handling, however, it is important
to know what information the target servlet can access.

When a call to sendError(…) is made, the system sets the values for the
variables:

javax.servlet.error.status_code

javax.servlet.error.message

http://www.sybex.com

180 Chapter 5 � Handling Exceptions

However, this is not the case with errors handled by the Request
Dispatcher. By forwarding the responsibility to the RequestDispatcher,
the calling servlet must set the error attributes. Otherwise, the output will
result in null values, as shown here.

After the code is changed to define the error attribute values, the output
will display the expected information, as shown after the following code
snippet.

…

try {

 theFile=getFile(filePath);

} catch(FileNotFoundException e) {

 req.setAttribute("javax.servlet.error.status_code",

 new Integer(405));

 req.setAttribute("javax.servlet.error.message",

 "Custom message: The file was not found");

 String display = "/servlet/ErrorServlet";

 RequestDispatcher dispatcher =

 req.getRequestDispatcher(display);

 dispatcher.forward(req, res);

}

…

In summary, errors can be passed off to other servlets by use of the
RequestDispatcher. Because the web.xml file is not used by the processing

http://www.sybex.com

Logging Messages 181

servlet, the error attributes must be set prior to forwarding the request. Next
we will address how to track these errors by logging messages.

Logging Messages

The sendError(…) method is designed to communicate errors or
problems to the client. This user-friendly description isn’t always beneficial to
the developer when the intent is to debug the situation. The GenericServlet
class offers two methods that enable the servlet to write its errors to a log file
for further inspection:

public void log(String msg) writes an error message to the serv-
let log file.

public void log(String msg, Throwable t) writes an error
message and Throwable object, which contains a stack trace of
the exception, to the servlet log file.

The log file provides a way to track the servlet’s actions by displaying
detailed descriptions of the problems. The following example attempts to
locate a file that cannot be found. When the exception is caught, the name
of the file and a stack trace are written to the log file for future investigation.
A stack trace is the computer path taken to arrive at the current problem.

…

try {

 theFile=getFile(filePath);

} catch(FileNotFoundException e) {

 log(“The following file could not be found: “

 + filePath, e);

 res.sendError(res.SC_NOT_FOUND);

}

…

The location and format of the log file is server dependent. The refer-
ence implementation, Tomcat, provides a /logs directory that stores a
servlet.log file with all the messages logged by the application’s servlets.
At a minimum, each log usually includes the registered name of the servlet
and the associated time stamp for when the error took place.

http://www.sybex.com

182 Chapter 5 � Handling Exceptions

Reporting Messages

Reporting a stack trace message to the client is a bit more difficult than simply
executing a System.out.println(e.printStackTrace()) statement. In
fact, that statement won’t compile, because the printStackTrace() method
returns a void. To pass an error message to a client, the sendError(…)
method must be called. But before it can be passed a message, you must
capture the trace and write it to a PrintStream or PrintWriter. The
Throwable class provides methods that extract the trace; they include:

void printStackTrace() prints a Throwable object to a standard
output stream.

void printStackTrace(PrintStream p) prints a Throwable object
to a specified print stream.

void printStackTrace(PrintWriter p) prints a Throwable object
to a specified print writer.

Using the exception handle within a catch block, you can write the trace
to a stream or writer. Its data must then be converted to a String (possibly
using the BufferedWriter class’s write(String s, int off, int len)
method) and passed to the sendError(…) method. The information will
then be displayed as part of the error page message.

Servlet Exceptions

When a method throws an exception, the developer has two choices:
the servlet can either catch the exception or throw it to the server to handle.
When a server catches an exception, it has complete freedom to handle the
problem in the way it deems appropriate. It could automatically log the excep-
tion, it could pass the client a message, it could call destroy() on the servlet
and reload it, or it could do something else completely different.

The server cannot be expected to catch all exceptions. Specifically, the
specification states that those exceptions handled by the server must subclass
IOException, ServletException, or RuntimeException.

It is common for the server to handle these types of exceptions, as they can
affect the life cycle of the servlet. For example, if a servlet’s service() or

http://www.sybex.com

Servlet Exceptions 183

doXXX(…) method literally throws the ServletException due to corrup-
tion, the server knows the best way to respond to the problem and notify the
client. Generally, the server handles all RuntimeExceptions(or any subclass
such as NullPointerException or ClassCastException). Because runtime
exceptions indicate problems in logic evident during the interpretation phase,
only the server can catch them.

It is not mandatory for a RuntimeException to be declared in a method’s
signature.

Now that we have discussed ways for a servlet to handle exceptions,
we will provide a closer look at the type of exception objects the server
can throw. The first is a ServletException, which indicates that a serious
problem occurred. The second is an UnavailableException, which notifies
the client that a servlet is not available. The last is a custom exception page
for known exceptions to send to the client. This feature enables developers
to provide custom exception pages for exception handling.

ServletException

A javax.servlet.ServletException is thrown by a servlet to indicate a
general servlet problem has occurred. The ServletException class sub-
classes the Exception class and has four constructors:

ServletException() is the default constructor that creates a basic
servlet exception used to provide a more descriptive name of the
problem.

ServletException(String message) constructs a servlet exception
with the specified message.

ServletException(Throwable rootCause) constructs a servlet
exception with a Throwable object containing a stack trace of the root
problem.

ServletException(String message, Throwable rootCause) con-
structs a servlet exception with a specified message and a Throwable
object containing a stack trace of the root problem.

http://www.sybex.com

184 Chapter 5 � Handling Exceptions

When an exception occurs, the developer might want to catch the exception
and throw it back to the calling thread with a different name. For example:

…

try {

 is.read();

} catch (IOException e) {

 throw new ServletException(e);

}

…

The ServletException acts as a wrapper to provide a more relevant
exception name to the caller. Now, after the ServletException is caught, the
getRootCause() method can be called to return the Throwable object.
This method returns the Throwable object that contains a trace identifying the
original problem and source. If the exception was created without a
Throwable object, null is returned.

UnavailableException

The javax.servlet.UnavailableException is a subclass of the Servlet
Exception class. An UnavailableException is thrown to indicate a servlet
is either temporarily or permanently unavailable:

Permanently unavailable The servlet throwing the exception cannot
recover from the error until some action is taken. Usually, the servlet is
corrupt in some way or not configured properly. Generally, the servlet
should log both the error and the actions needed to correct the problem.

Temporarily unavailable A servlet cannot handle the request for a
period of time due to some system-wide problem. For example, there might
not be sufficient memory or disk storage to handle requests, or a third-tier
server might not be accessible. Some of these problems are self-correcting,
and others might require a system administrator to take corrective action.

A servlet that throws an UnavailableException that is permanent is removed
from service, and a new servlet instance is created to handle further requests.
If a new instance cannot be created, an error will be sent to the client.

http://www.sybex.com

Servlet Exceptions 185

When a servlet is unavailable, the server will return a response containing
an SC_SERVICE_UNAVAILABLE(503) status code to notify the client of the
situation. The response will also include a Retry-After header with an
estimated time of unavailability.

If either a temporary or permanent UnavailableException is thrown
during the init(…) method, the service(…) method will never be reached.
Instead, the server will try to initialize a new instance either immediately or
after the defined period of time.

The UnavailableException class has two constructors:

UnavailableException(String msg) constructs an exception
with a descriptive message indicating the servlet is permanently
unavailable.

UnavailableException(String msg, int seconds) constructs an
exception with a descriptive message indicating the servlet is tempo-
rarily unavailable for an estimated amount of time.

When the exception is temporary and an estimated time cannot be pro-
vided, the specification encourages developers to provide a negative value
for the second argument. Do keep in mind that the time is only an estimate.
After the exception is thrown, the component catching the exception can use
the following methods to learn more about the problem:

int getUnavailableSeconds() returns the number of seconds the
servlet expects to be temporarily unavailable.

boolean isPermanent() returns a boolean indicating whether the
servlet is permanently unavailable.

Planning for Error Handling

You are hired to participate in the development of a large web-based bank-
ing application. Your role is to ensure that all potential errors are handled
in a manner that meets security and customer standards. The company’s
network is spread through the West Coast and maintains four servers in
different locations.

http://www.sybex.com

186 Chapter 5 � Handling Exceptions

Exception Pages

We have established that a server can choose to handle an exception in the
fashion it deems appropriate. The developer, however, can control the look
and content of the error page used to notify the client of server-handled
exceptions. Using the web.xml file and custom error pages, a web applica-
tion can specify the exception page to display when a specific exception is
thrown. Earlier, we showed you how to display error pages for a particular
error code. Now we will show you how to display an exception page for a
particular exception type.

This sample code from the DTD shows how a static or servlet page can be
used when a specific exception is thrown:

…

<error-page>

 <exception-type>

 javax.servlet.UnavailableException

 </exception-type>

 <location>

 /servlet/DynamicErrorDisplay

 </location>

</error-page>

…

Recently you were notified that each system will be managed by a separate
group and is likely to have a different web server running the application.
This, of course, means you cannot rely on the server to handle errors
because the behavior of each is likely to differ. This consideration definitely
affects how the errors will be handled.

The bank is a franchise, which means the differences between each branch
must appear seamless to the customer. When a problem occurs, it must
be handled the same way in all branches. The client should see the same
message and expect the same results.

Because you cannot rely on the consistent behavior of each server, you decide
to develop a single ErrorServlet class that would handle all potential errors.
This single ErrorServlet class would display the common message to the cli-
ent and perform any necessary logging to the log files. This solution would
alleviate much of the work required to create individual error pages and would
provide more maintainable code while satisfying the client requirements.

http://www.sybex.com

Servlet Exceptions 187

When the UnavailableException is thrown, the server will locate the
DynamicErrorServlet and display its contents to the client.

The exception-type must include the fully qualifying package name. Other-
wise, the exception will be handled in its default manner.

By using error attributes, you can construct a dynamic servlet to handle
various exception types. Although the system might provide default values
for some of these attributes, the developer can also set their definitions at
some point within the application and share them with other servlets
depending on the definition scope. Table 5.1 lists the error attributes.

The javax.servlet.error.exception is new to the 2.3 specification.
By providing the Throwable object, the message and type can be extracted,
thereby making javax.servlet.error.message and javax.servlet
.error.exception_type redundant. The two attributes are still included to
ensure backward compatibility.

T A B L E 5 . 1 Error Attributes

Attribute Type Explanation

javax.servlet.error
.status_code

java.lang.Integer The status code

javax.servlet.error
.exception_type

java.lang.Class The exception class

javax.servlet.error
.message

java.lang.String The error message

javax.servlet.error
.exception

java.lang.Throwable The exception object

javax.servlet.error
.request_uri

java.lang.String The URI of the request
processed by the serv-
let where the error
occurred

javax.servlet.error
.servlet_name

java.lang.String The logical name of
the servlet

http://www.sybex.com

188 Chapter 5 � Handling Exceptions

Listing 5.4 is a simple servlet that demonstrates how the attributes are
used to generate a generic error page. This code creates a basic error page
with the message associated with the exception and the location of the error.

Listing 5.4: Dynamically Generated Error Page

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class DynamicErrorDisplay extends HttpServlet {

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType(“text/html”);

 PrintWriter out = res.getWriter();

 String message = null;

 Throwable t =

 (Throwable)req.getAttribute(“javax.servlet.exception”);

 if (t != null)

 message = t.getMessage();

 out.println(“<HTML>”);

 out.println(“<BODY>”);

 out.println(“<H1>” + message + “</H1>”);

 out.println(“<I>Error accessing “

 + req.getRequestURI() + “</I>”);

 out.println(“</BODY></HTML>”);

 }

}

Using the getAttribute(String name) method, we extract the most
current Throwable reference. We then extract the associated message to
incorporate the information in the response page.

http://www.sybex.com

Exam Essentials 189

Summary

In this chapter, we covered the various ways to handle errors. When a
problem occurs, you can catch the exception and handle the error by doing
one of the following:

� Printing a message to the client

� Providing a server-generated error page to the client

� Providing a custom generated page to the client

� Dispatching the request to another servlet to handle the error

Printing a message to the client requires a little work but does not ensure
a consistent response to an error. The second approach is the simplest
because you rely on the server to handle the error and generate the page.
The specification does not mandate how the server should handle errors or
exceptions, so once again you have the problem of inconsistency in a dis-
tributed environment. The third and fourth options require more work
to develop the error and exception pages; however, you are guaranteed
consistency among servers.

Finally, this chapter focused on the exceptions thrown by the servlet. The
ServletException is thrown when a general servlet problem occurs.
The UnavailableException is thrown when a servlet is either temporarily
or permanently unavailable.

Exam Essentials

Be able to identify correctly constructed code for handling logic excep-
tions and their behavior. When a method “throws” an exception, the
calling thread can either try to catch the exception or pass the responsi-
bility to its calling thread. If a thread decides to “pass the buck,” it should
wrap the exception and log its path so the thread that finally handles the
error knows the originating source.

Be able to return an HTTP error by using the sendError response.
When using the response object, you can invoke the sendError method
by passing the status code and a message. Assuming the output is not
committed, this causes the server to generate an error page with the
information provided.

http://www.sybex.com

190 Chapter 5 � Handling Exceptions

Be able to return an HTTP error by using the setStatus method. By
using the response object, you can invoke the setStatus(…) method by
passing in the status code. This call does not automatically generate an
error page; instead you must provide a static or dynamic page in the
web.xml file for a response. Generally, this method should be used only
for setting the status of non-errors.

Identify the configuration that the deployment descriptor uses to handle
each exception. For all error pages, you should use the error-page tags.
If the page identifies a code, error-code is used to identify the value. If,
however, the page identifies an exception, the tag is exception-type. The
location of the file is found by using the location tag. Location values
must begin with a forward slash (/) and cannot identify servlets from within
the /WEB-INF directory.

Know how to use a RequestDispatcher to forward a request to an error
page. The RequestDispatcher can be used to forward handling of the
error to another servlet. If this procedure is followed, then attributes must
be set prior to the dispatch. The deployment descriptor must provide the
mapping necessary to locate the error handling servlet. It is then up to
the target servlet to handle the problem.

Identify the method used to write a message and an exception to the
WebApp log. The GenericServlet class offers a log(…) method used
to pass a custom message, or a custom message and Throwable object, to
a server-specific log file.

Key Terms

Before you take the exam, be certain you are familiar with the follow-
ing terms:

dynamic error page ServletException

exceptions stack trace

non-error static error page

permanently unavailable temporarily unavailable

RequestDispatcher UnavailableException

sendError(…)

http://www.sybex.com

Review Questions 191

Review Questions

1. Which of the following calls will cause an error page to be automati-
cally generated by the server? (Choose all that apply.)

A. response.setStatus(404);

B. request.setStatus(request.SC_NOT_FOUND)

C. response.sendError(response.SC_NOT_FOUND)

D. response.sendError(404, “Couldn’t find file”);

2. Which of the following methods is not a legal way to handle an
exception?

A. catch (Exception e){
 String display = “/servlet/ErrorServlet”;
 RequestDispatcher dispatcher =
 req.getRequestDispatcher(display);
 dispatcher.forward(req, res);
}

B. catch (Exception e) {
 out.println(“Problem”);
}

C. catch (Exception e) {}

D. catch (Exception e) {
 req.sendError(400, “Problem”);
}

E. None of the above

3. Errors can be handled in which of the following approaches? (Choose
all that apply.)

A. RequestDispatcher

B. sendError(…) method

C. sendStatus(…) method

D. setError(…) method

http://www.sybex.com

192 Chapter 5 � Handling Exceptions

4. Which of the following statements is false?

A. A servlet can write its errors to a log file.

B. A servlet can write its errors to a client.

C. A servlet can write its errors to a custom file.

D. None of the above.

5. Which of the following methods is used to pass an error message to the
client? (Choose all that apply.)

A. log(String msg)

B. log(String msg, Throwable t)

C. sendMessage(String msg)

D. sendError(int code, String msg)

E. sendError(String msg, Throwable t)

6. In which of the following classes or interfaces will you find the log
method for a servlet?

A. Servlet

B. GenericServlet

C. ServletResponse

D. HttpServletResponse

7. Which of the following approaches enables a servlet to pass the error
to another servlet to handle?

A. log

B. sendError

C. RequestDispatcher

D. setStatus

8. Given the following servlet: /context/WEB-INF/classes/Servlet
Error.class, which of the following paths best provides access to the
servlet from the location tag in the deployment descriptor?

http://www.sybex.com

Review Questions 193

A. /context/WEB-INF/classes/ServletError.class

B. /context/WEB-INF/classes/ServletError

C. servlets/ServletError

D. /servlet/ServletError.class

E. None of the above

9. Which of the following is not a legal error attribute?

A. javax.servlet.error.status_code

B. javax.servlet.error.exception_type

C. javax.servlet.error.exception

D. javax.servlet.error.uri

10. Which of the following exceptions is thrown when a servlet cannot be
accessed temporarily?

A. ServletException

B. UnavailableException

C. UnaccessibleException

D. FailureException

11. Which of the following methods is used to return the Throwable
object of a ServletException?

A. getThrowable()

B. getRoot()

C. getRootCause()

D. getThrowableObject()

E. getSource()

http://www.sybex.com

194 Chapter 5 � Handling Exceptions

12. Which of the following methods is used to pass an error to another serv-
let to handle by using the RequestDispatcher? (Choose all that apply.)

A. process(ServletRequest req, ServletResponse res)

B. include(ServletRequest req, ServletResponse res)

C. forward(ServletRequest req, ServletResponse res)

D. processError(ServletRequest req, ServletResponse res)

13. Which of the following statements is false?

A. The seconds defined within an UnavailableException represent
an estimated value.

B. A server can handle an unavailable request by returning a
SC_SERVICE_UNAVAILABLE status code.

C. A server can handle an unavailable request by returning a header
Retry with the end time of unavailability.

D. None of the above.

14. Which of the following are most likely legal location values given a
servlet called TestServlet and an HTML file called Test.html?
(Choose all that apply.)

A. Test.html

B. /Test.html

C. /context/WEB-INF/classes/TestServlet

D. /servlet/TestServlet

15. Which of the following is not a legal error attribute?

A. javax.servlet.error.status

B. javax.servlet.error.exception_type

C. javax.servlet.error.message

D. javax.servlet.error.servlet_name

http://www.sybex.com

Answers to Review Questions

195

Answers to Review Questions

1.

C, D. When

sendError(…)

 is called, the server will generate an
automatic error page for the specified status code. You can pass in
either the status code integer value only or the code plus a message.

2.

E. You can catch an exception by forwarding the request to a request
dispatcher, by printing a message to the response

OutputStream

, by
ignoring the exception, or by having the server generate an error page.

3.

A, B. An error can be forwarded to another servlet through the

RequestDispatcher

 to handle a problem. The

sendError(…)

method is also useful in that it has the server generate an error page.
The other methods are not legal methods.

4.

D. The first three options are true. By using the log method, a servlet
can write its errors to the server-specific log file. To write the error to
the client, the servlet uses the

sendError(…)

 method. If a servlet
created its own file, it could then write to that file when problems
occur. This process isn’t used, but is possible.

5.

D. The log method is used to write errors to the web application’s log
file. To communicate with the client, the

sendError(…)

 method is
used. Its first argument is always an

int

 to identify the code type; the
second argument is a

String

 defining the message.

6.

B. The log method is used to write errors to the web application, not
back to the client. Consequently, the response object is not used. The

Servlet

 interface includes only life-cycle and access methods. This
leaves the

GenericServlet

 class as the answer.

7.

C. The

RequestDispatcher

 enables a servlet to pass the responsi-
bility of handling an error to another servlet. When an error is passed,
the attributes for the request are not set.

8.

E. Files located within the

/WEB-INF

 directory cannot be accessed
directly. In addition, files defined within the

location

 tag must begin
with a forward slash (

/

). The fourth option fails as well because you
do not include the

.class

 extension.

http://www.sybex.com

196

Chapter 5 �

Handling Exceptions

9.

D. The last attribute is actually

javax.servlet.error.request_uri

.
It is used to return the URI of the request processed by the servlet
where the error occurred.

10.

B. When a servlet is either temporarily or permanently unavailable,
the

UnavailableException

 is thrown.

11.

C. The

getRootCause()

 method returns the

Throwable

 object of
the exception. It returns

null

 if one is not included.

12.

B, C. The

forward(…)

 method is used to have another servlet handle
the response, while the

include(…)

 method allows another calling
servlet to modify the response object before and after the call. The tar-
get servlet can pass the responsibility back to the calling servlet to
commit the response.

13.

C. The server usually sends back a header called

Retry-After

.
There is no header called

Retry

.

14.

B, D. All location values must start with a forward slash. In addition,
you cannot access a servlet directly from its

/WEB-INF

 directory.
Instead, you can access the servlet from the server-specific directory
structure.

15.

A. The attribute for the status code is actually

javax.servlet.error
.status_code

.

http://www.sybex.com

Chapter

6

Session Management

THE FOLLOWING SUN CERTIFIED WEB
COMPONENT DEVELOPER FOR J2EE
PLATFORM EXAM OBJECTIVES COVERED
IN THIS CHAPTER:

�

5.1 Identify the interface and methods for each of the following:

�

Retrieve a session object across multiple requests to the
same or different servlets within the same WebApp

�

Store objects into a session object
�

Retrieve objects from a session object
�

Respond to the event when a particular object is added
to a session

�

Respond to the event when a session is created and
destroyed

�

Expunge a session object

�

5.2 Given a scenario, state whether a session object will be

invalidated.

�

5.3 Given that URL rewriting must be used for session

management, identify the design requirements on session-

related HTML pages.

http://www.sybex.com

I

magine having a conversation with a person who was unable to
remember what you just said. At first, you might find this interesting; how-
ever, soon your amusement would turn to irritation as they continually
asked you to repeat yourself. This is the scenario servlets would encounter if
their data could not be temporarily cached during a conversation with a web
application. When a client accesses a web application, they often supply
information that will be used by the application at a later period during the
conversation. If this information could not be retained, the application
would need to ask for the information again. This is both time-consuming
and inefficient. A servlet’s session object is used to resolve this issue. Sessions
provide various ways to monitor and maintain client data. In this chapter,
we will address how to:

�

Track a client’s session

�

Change a session’s data

�

Respond to the creation or destruction of a session object and its
attributes

�

Invalidate a session

Knowledge of how the session works will help you manage a session
object more efficiently. We will begin by discussing the various ways to track
a session.

Tracking Sessions

W

hen a client interacts with a server application, that client is likely
to make multiple requests to achieve a particular goal. Because the HTTP
protocol is stateless, it closes its connection after each request. Consequently,

http://www.sybex.com

Tracking Sessions

199

client data stored within a request is available for only a short period of time.
For a client object with a longer lifespan, a session is used. A

session object

is usually created when a client makes its first request to an application.
It is unique to a client and can exist longer than a single request or even
longer than the life of a client. It is an object used to track client-specific
data for the duration of the conversation or a specified period of time.
What distinguishes one session from another is its unique ID. In fact, the
container uses this ID to map an incoming request to the correct session
object, which in turn is associated to a particular client. The actual client
information can be transferred by using one of three session processes:

�

Using hidden form fields

�

Rewriting the URL

�

Using cookies

Our focus in this section will be to discuss the many ways to maintain a
session object. We will begin by addressing how to transfer a session ID by
using a form attribute type called

hidden

.

Using Hidden Form Fields

Transferring information between an HTML form and a servlet can be done
in several ways. The most basic procedure is to transfer information back
and forth as data values. A form can contain fields with client-cached values
passed between each request. Because this information does not need to be
visible to the client, it is marked by using a field type of

hidden

.
Imagine the following web application scenario:

1.

A login screen is displayed.

2.

The user enters their login name and password.

3.

The servlet verifies the information and returns a web page for the
client to utilize the company’s services.

4.

The new page stores the client’s login name from the previous servlet.
This information is not visible to the client, but is needed for checkout
purposes.

By using

hidden HTML values

, you can store client data between
servlets to use at a later date. The following HTML code produces the

http://www.sybex.com

200

Chapter 6 �

Session Management

login screen used for this scenario:

<FORM ACTION='/servlet/CarServlet' METHOD='POST'>

 <P>Enter your: </P>

 <P>Login <INPUT TYPE='text' SIZE='18' NAME='login'></P>

 <P>Password <INPUT TYPE='password' SIZE='15'

 NAME='pwd'></P>

 <P><INPUT TYPE='submit' VALUE='GO!' NAME='button'> </P>

 </FORM>

After the user enters their login name and password, they trigger the
request by clicking the submit button. The servlet then verifies the infor-
mation and constructs a response containing the client’s information. The
following code shows this process. (Pay particularly close attention to
the bold text. It highlights how hidden values are transferred.)

public class CarServlet extends HttpServlet {

 public void doPost(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 String login = req.getParameter("login");

 String pwd = req.getParameter("pwd");

 ...

 //verify login and password with database

 //Use database to get customer information like

 //their firstName, lastName, address

 Customer cust = db.getCustomer(login);

 String firstName=cust.getFirstName();

 String lastName=cust.getLastName();

 String address=cust.getAddress();

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 ...

 //generate HTML form containing car characteristics

 ...

 out.println("<FORM ACTION=

 ‘/servlet/CheckOutServlet’ METHOD='POST'>”);

http://www.sybex.com

Tracking Sessions

201

 out.println("<INPUT TYPE='hidden' NAME='loginName'

 VALUE=’"+ login + "’>");

 out.println("<INPUT TYPE='hidden' NAME='firstName'

 VALUE=’" + firstName + "’>");

 out.println("<INPUT TYPE='hidden' NAME='lastName'

 VALUE=’" + lastName + "’>");

 out.println("<INPUT TYPE='hidden' NAME='mailingAddress'

 VALUE=’" + address + "’>");

 ...

 out.println("<INPUT TYPE='submit' VALUE='CheckOut'>");

 }

}

The

CarServlet

 creates an HTML form response containing four hidden
values. Each value is assigned a specific piece of client information. By press-
ing the submit button, the user triggers a request to check out. This request
is sent to the

CheckOutServlet

, which retrieves hidden values by using the

ServletRequest

 method

getParameter(

String

name

)

.

public class CheckOutServlet extends HttpServlet {

 public void doPost(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

String loginName = req.getParameter("loginName");

 String address = req.getParameter("address");

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML><BODY>");

 out.println("<P> Thanks for your order " +

 loginName + "</P>");

 out.println("<P> Your invoice will be mailed to:

 </P>");

 out.println("<P><I>" + address + "</I><P>");

 }

}

Figure 6.1 shows the hidden value output.

http://www.sybex.com

202

Chapter 6 �

Session Management

F I G U R E 6 . 1

Hidden value output

Hidden values provide a way to transfer data to the server in a manner
that prevents the client from modifying the information directly. Typically,
the client does not even know the data is being sent back and forth. The dis-
advantages to this approach are as follows:

�

Tracking each hidden value in each servlet can become tedious. Unfor-
tunately, as the session persists and information increases, passing
hidden data back and forth can become taxing.

�

The session can persist only through dynamically generated pages. If
there is a need to display static, e-mail, or bookmarked documents, the
session will be lost.

�

Hidden value transfers are the least secure method of maintaining
information between pages. Because HTTP transfers all data as clear
text, it can be intercepted, extracted, and manipulated. If someone
were watching the transmission between client and server, they could
easily read information such as the login ID and password.

Although there are many disadvantages, it is a simple approach that
can be used when you are communicating a small amount of noncritical
information.

Rewriting the URL

Anonymous session tracking can also be done by using a technique called
URL rewriting. This approach to session tracking is used when clients do not
accept cookies (we’ll talk about cookies in the next section).

URL rewriting

is a methodology that associates a session ID to all URL addresses used
throughout the session. Using the ID, a developer can map client-related data
to the session object for that client. The ID is temporarily stored until the
session has ended. After the session has ended, the ID and related data are

index.html CarServlet CheckOutServlet

http://www.sybex.com

Tracking Sessions

203

discarded. Keep in mind that it is important for the session ID to have a stan-
dard name that all containers can recognize. The specification defines that
name as

jsessionid

. A standardized name enables the container to associ-
ate requests to their session objects stored on the server.

“Rewriting” the URL to contain the session ID enables any related servlet
to extract previously tracked data. There are two methodologies used to
rewrite a URL. One approach is to manually adjust the URL to include the
session ID, and the second approach is to use provided API methods to
encode the URL. We will cover both techniques in detail.

Manual URL Rewriting

Manually rewriting a URL can be done by physically adding the ID to the
constructed URL. How the ID is stored and accessed from within the URL
can vary. Table 6.1 lists several ways to rewrite the URL.

The first example in Table 6.1 shows the original path. The second
approach adds the session ID to the path directly. This approach works
on all servers, but isn’t very effective when other information must also be
added to the path of the URL. The third approach adds the ID as a parameter.
To avoid naming collisions and guarantee automatic mapping, the session
ID must be called

jsessionid

. The last approach uses a custom, server-
specific change that works for servers that support this technique. However,
even custom approaches are required to name the parameter

jsessionid

.

T A B L E 6 . 1

URL-Rewriting Approaches

URL State

http://localhost:8080/servlet
/MyServlet

Original

http://localhost:8080/servlet
/MyServlet/567

Extra path information

http://localhost:8080/servlet
/MyServlet?jsessionid=567

Add parameter

http://localhost:8080/servlet
/MyServlet;jsessionid=567

Custom change

http://www.sybex.com

204

Chapter 6 �

Session Management

In this section, we will show you how to rewrite the URL by adding a ses-
sion ID to the URL path. But first, let’s talk about how the ID is generated.
The goal is to derive a value that is completely random and not shared. The
Remote Method Invocation (RMI) API provides several methods that help
develop such a method. The common procedure is to create a method that
does the following:

public static String generateSessionID(){

 String uid = new java.rmi.server.UID().toString();

 return java.net.URLEncoder.encode(uid);

}

The

UID

 class is used to create a unique identifier on the host system
generating this value. For further complexity, the value is converted into
MIME-type format by using the

URLEncoder

’s

encode(

String

uid

)

 method.
Fundamentally, the goal is achieved; when called, this method generates a
unique ID that can be used by a session on the existing system.

Now you’re ready to learn how to “rewrite” the URL to contain the ses-
sion ID. We’ll begin by revisiting the URL structure:

Request URL = contextPath + servletPath + pathInfo

 +

query
string

Given a request URL of

/games/Chess

, you can break the pieces into
their defined categories:

Context path:

/games

Servlet path: /Chess

Path info: /null

Query string: /null

If you had a session ID with the value 567, that ID could be incorporated
into the URL by adding it to the path info section, as follows:

/games/Chess/567

Literally, this can be done by concatenating the session ID to the ACTION
value’s URL. For example:

out.println("<FORM ACTION=’/games/Bingo/"

 + sessionID + "/” Method=’POST’>");

out.println("<INPUT TYPE='submit' VALUE='Bingo'>");

Let’s say the current servlet that is running is called /games/Overview.
On the page, there is a button with the text “Bingo.” When the button is
pressed, the current URL is switched to /games/Bingo/567. This new

http://www.sybex.com

Tracking Sessions 205

servlet page provides the session ID within the URL, which enables the devel-
oper to extract any data stored from previously accessed servlets. To access
the session ID, use the HttpServletRequest method getPathInfo(). This
method returns extraneous information between the servlet and the query
string. The new servlet can then use utility classes to retrieve data associated
with the session ID. Generally, you would expect to have a utility class for
writing data and its associated session ID to a location. The class should also
provide functionality to retrieve the client data based on a unique session ID.
You might expect the class to contain methods similar to those listed here:

public class SessionIDUtility {

 public static String generateSessionID(){

 String uid = new java.rmi.server.UID().toString();

 return java.net.URLEncoder.encode(uid);

 }

 public static void writeSessionValue(Connection con,

 String sessionID, String name, String value) {

 // write record to database for the provided

 // sessionID

 }

 public static String[] getSessionValues(

 Connection con, String sessionID) {

 //returns the values associated to the provided

 //sessionID

 }

 public static Object getSessionValue(

 Connection con, String sessionID, String name) {

 // returns the Object associated to the name

 // for a particular session ID

 }

}

Given these methods, a servlet could save current data and retrieve it
from any other servlet accessed during the session. Figure 6.2 shows a simple
application that begins by asking the user for their name. A session ID
is generated to store the name for other servlets in the application to access.
When the user selects a game of choice, the new servlet accesses the session
information by retrieving the ID and then getting the user’s name. The
application should appear as shown in Figure 6.2.

http://www.sybex.com

206 Chapter 6 � Session Management

F I G U R E 6 . 2 Sample URL-rewriting application

The first image is a simple HTML page that asks the user for their
name. When the Begin button is pressed, the /games/OverviewServlet is
accessed and displays two game options. Before we go into the functionality
details, take a look at the source code for these files. Listing 6.1 displays the
HTML code necessary to launch the initial program.

Listing 6.1: index.html

<HTML>

 <HEAD><TITLE>Welcome to the Game Center</TITLE></HEAD>

 <BODY>

 <FORM ACTION='/games/OverviewServlet'

 METHOD='POST'>

 <P>Please enter your name to play: </P>

 <P><INPUT TYPE='text' SIZE='20'

 NAME='name'></P>

 <P><INPUT TYPE='submit' VALUE='Begin'

 NAME='button'></P>

 </FORM>

 </BODY>

</HTML>

The file index.html simply provides a form for the user to submit their
name. When a request is triggered, the OverviewServlet is invoked. The
code for this class is shown in Listing 6.2.

index.html OverviewServlet

CheckerServlet

BingoServlet

http://www.sybex.com

Tracking Sessions 207

Listing 6.2: OverviewServlet.java

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

import java.sql.*;

public class OverviewServlet extends HttpServlet {

 public void doPost(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 String name = req.getParameter("name");

 String sessionID =

 SessionIDUtility.generateSessionID();

 Connection con = (Connection)

 getServletContext().getAttribute("Connection");

 SessionIDUtility.writeSessionValue(con,

 sessionID, "name", name);

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML><BODY>");

 out.println("<H1>The Game Center</H1>");

 out.println("<P>Press a button to play:</P>");

 out.println("<FORM ACTION=’/games/Checkers/" +

 sessionID + "' Method='POST'>");

 out.println("<INPUT TYPE='submit' VALUE= " +

 " 'Checkers'></FORM>");

 out.println("<FORM ACTION=’/games/Bingo/" +

 sessionID + "' Method='POST'>");

 out.println("<INPUT TYPE=’submit’ VALUE='Bingo'>");

 out.println("</FORM></BODY></HTML>");

 }

}

http://www.sybex.com

208 Chapter 6 � Session Management

Listing 6.2 shows how the servlet prepares to rewrite the URL. First, the
user’s name is acquired, and then a unique session ID is generated for that par-
ticular user. A preassigned connection is accessed from the ServletContext
and used to write the session ID and name to a local database. Finally, the page
is generated with each button linked to a different URL including the session
ID. If the user selects Bingo, they will access the BingoServlet. Listing 6.3
displays the code for this class.

Listing 6.3: BingoServlet.java

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

import java.sql.*;

public class BingoServlet extends HttpServlet {

 public void doPost(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 String sessionID = req.getPathInfo();

 String userName=””;

 if (sessionID == null) {

 // Redirect the user back to the login screen.

 // If a session ID is null, it indicates the

 // user has not logged into the system.

 }

 Connection con = (Connection)

 getServletContext().getAttribute("Connection");

 userName = (String)SessionIDUtility.getSessionValue(

 con, sessionID, "name");

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML><BODY>");

 out.println("<H1>Your turn: “ + userName +

 “</H1>”);

 // generate the bingo game

 …

http://www.sybex.com

Tracking Sessions 209

 out.println("For help, click “ +

 “<A HREF=’/servlet/Help/” + sessionID +

 “?rules=Bingo’>Click here for help”);

 out.println("</FORM></BODY></HTML>");

 }

}

Listing 6.3 shows how the servlet accesses the session ID from the URL
path by using the request method getPathInfo(). Remember, this method
returns the path information listed after the servlet path and before the query
string. A connection to the associated database is acquired, and the session
ID is used to extract data associated with the current user. After the name
value is obtained, it is incorporated into the Bingo page. Finally, a hyperlink
is used to provide help; it too contains the session ID value, in case the Help
servlet needs the session-related user data.

Using Methods to Encode the URL

Instead of manually generating a session ID and physically adding it to the
URL, the API provides methods that manage the task for the developer. The
HttpServletResponse class offers the following two methods:

� public String encodeURL(java.lang.String url)

� public String encodeRedirectURL(java.lang.String url)

The encodeURL(…) method rewrites the specified URL to include a ses-
sion ID if needed. If one is not needed, the method returns the original URL.
An unchanged URL can result from a server that does not support URL
rewriting or from a server that has the feature turned off. As for the seman-
tics of how the URL is encoded, that feature or technique is server-specific.
In general, it is good practice to have all URLs emitted by a servlet run
through this method to ensure application-wide access to the session ID.

The second method is similar to the first in that it, too, encodes the
passed-in URL by adding the session ID. It differs, however, in when it is
used. At times there is a need for a servlet to temporarily redirect a response
to a different location. This is done by using the HttpServletResponse’s
method sendRedirect(String url). Before calling this method, the URL
should be encoded by using a method specifically designed to handle
URL encoding for a redirected response: encodeRedirectURL(String url).
The reason for using a different method is that a redirect URL is different
from a normal URL. For a redirect URL, all non-ASCII values must be

http://www.sybex.com

210 Chapter 6 � Session Management

converted to their hexadecimal values; this includes ampersands and equal
signs. For a normal URL, the ampersands and equal signs do not need to be
converted to hexadecimal format. This distinction is critical and necessary
for the sendRedirect(…) method to work. The following is an example of
a rewritten URL:

http://localhost:8080/servlet/CheckOutServlet;

jsessionid=4347

To encode links in your URL, you must make slight modifications to the
HTML code. Here is an example of how to rewrite the URL to include an
encoded URL in a form:

String urlSession =
res.encodeURL("/servlet/CheckOutServlet");

out.println("<FORM ACTION=’" + urlSession + "‘” +

 “ Method='POST'>");

out.println("<INPUT TYPE='submit' VALUE=’ Exit ‘>");

out.println("</FORM></BODY></HTML>");

If your intent is to encode a URL for a link, you simply include an encoded
String instead of the standard URL:

out.println(“Click “ +

 “<A HREF=’”+ res.encodeURL(“/servlet/CheckOutServlet”) +

 “‘>here”);

In order for the container to encode the URL with a session ID, three
conditions usually exist:

� The browser supports URL encoding.

� The browser does not support cookies.

� The session tracking feature is turned on.

When using the encodeURL(…) method, the session ID is stored as a
path parameter. As such, you must call req.getPathInfo() to retrieve the
ID value.

You can also access the ID by calling req.getSession() to acquire a handle to
the actual session object (assuming one exists). Using the session instance, the
ID value can then be accessed by calling session.getId(). This object is cov-
ered in more detail in the upcoming “Using the HttpSession Object” section.

http://www.sybex.com

Tracking Sessions 211

The servlet can also use the following HttpServletRequest methods to
learn more about the methodology used to generate the ID, as well as its
validity:

� public boolean isRequetedSessionIdFromCookie()

� public boolean isRequestedSessionIdFromURL()

� public boolean isRequestedSessionIdValid()

These methods validate the session object and its place of origin. If the ses-
sion is not valid, the servlet can redirect the user to a new screen to log in
again. If the session ID was obtained from the URL, the servlet might opt to
perform a different task than if it was obtained from a cookie.

Using Cookies

Another way to perform session tracking is through persistent cookies.
Remember, a cookie is an object containing small amounts of information
sent by a servlet to a web browser, then saved by the browser, and later sent
back to the server. Because the cookie’s value can uniquely identify a client
and maintain client data, using cookies is an optimal way to track sessions.

A cookie is created by using two parameters: a name and a value. The con-
structor is as follows:

public Cookie(String name, String value)

Unlike a hidden value, which must exist in all servlet pages, a cookie is
added to the servlet’s response object and is propagated to all servlets accessed
during the session.

The servlet specification mandates that the name of the value used to track the
session for a cookie must be called JSESSIONID.

The ID name must be all uppercase when used within a cookie, but lowercase
when used in URL rewriting.

A cookie can be added to an HttpServletResponse object in the follow-
ing way:

Cookie cookie = new Cookie(“JSESSIONID”, “567”);

res.addCookie(cookie);

http://www.sybex.com

212 Chapter 6 � Session Management

If another servlet is interested in accessing this information, it can call the
getCookies() method of the HttpServletRequest class:

public Cookie[] getCookies()

Using our example from the preceding “Rewriting the URL” section, you
can create a cookie to add the session ID. Listing 6.4 demonstrates how to
use cookies to rewrite the OverviewServlet.

Listing 6.4: Using Cookies with the OverviewServlet

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class OverviewServlet extends HttpServlet {

 public void doPost(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 String name = req.getParameter("name");

 String sessionID =

 SessionIDUtility.generateSessionID

 Cookie cookie = new Cookie(“JSESSIONID”,

 sessionID);

 res.addCookie(cookie);

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML><BODY>");

 out.println("<H1>The Game Center</H1>");

 out.println("<P>Press a button to play:</P>");

 out.println("<FORM ACTION=’/games/Checkers/’” +

 " Method='POST'>");

 out.println("<INPUT TYPE=’submit’" +

 " VALUE=’Checkers’></FORM>");

 out.println("<FORM ACTION=‘/games/Bingo/’" +

 " METHOD=’POST’>”);

http://www.sybex.com

Tracking Sessions 213

 out.println("<INPUT TYPE=SUBMIT VALUE='BINGO'>");

 out.println("</FORM></BODY></HTML>");

 }

}

The BingoServlet can then use its request object to get all the cookies asso-
ciated with the session. The modified code would look similar to Listing 6.5.

Listing 6.5: Using Cookies with the BingoServlet

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

import java.sql.*;

public class BingoServlet extends HttpServlet {

 public void doPost(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 String sessionID;

 String userName;

 Cookie[] cookies = req.getCookies();

 if (cookies != null) {

 for (int i=0; i<cookies.length; i++) {

 String id = cookies[i].getName();

 if(id.equals(“JSESSIONID”)) {

 sessionID = cookies[i].getValue();

 break;

 }

 }

 }

 Connection con =

 getServletContext().getAttribute("Connection");

 userName =

 (String) SessionIDUtility.getSessionValue(

 con, sessionID, "name")’;

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML><BODY>");

http://www.sybex.com

214 Chapter 6 � Session Management

 out.println("<H1>Your turn: “ + userName +

 “</H1>”);

 // generate the bingo game

 …

 out.println("For help, click ” +

 “” +

 “Click here for help” +

 “”);

 out.println("</FORM></BODY></HTML>");

 }

}

In this example, we get all the cookies associated with the request. We filter
through each cookie until we come across the one called JSESSIONID. By using
the assigned ID, the doPost(…) method can then use the getSessionValue(…)
method within the SessionIDUtility class to get the user’s name. In our
example, we could have just added the user’s name to the cookie. Instead, we
opted to show you the approach using a session ID value because a session usu-
ally contains more than one data element. Notice the hyperlink to the Help
servlet no longer contains the ID value within its URL. When the Help servlet
is invoked, it will receive the existing session cookies within its request object.

The final and most convenient way to handle session data is to pass an
HttpSession object, which implicitly contains the client’s data, back and
forth between all session-related servlets.

Using the HttpSession Object

Previously, we discussed ways to track the session object between client/
server requests, where each example (cookie or URL rewriting) used a database
for persistent storage of session data. In this section, the HttpSession object
replaces the database for persistent storage, and uses one of the methods pre-
viously discussed to propagate the session ID.

Internally, the container determines the method used to transmit the session
ID between the client and server (whether it used cookies or URL rewriting).

The servlet creates an HttpSession object to maintain data for the entire
duration of a transaction. Assuming the client’s browser supports session

http://www.sybex.com

Using the HttpSession Object 215

management, an HttpSession object is created when the client first accesses
a web application. Data can then be written to or retrieved from this object.

It is important to understand that a session exists only within its original
context. For example, if a servlet uses the RequestDispatcher to forward its
request to another application, a new session is created that is different from
the calling servlet.

To access a session object, use the HttpServletRequest method:

public HttpSession getSession()

The method returns the HttpSession object tied to the client requesting
the current servlet. If the object does not exist, the getSession() method
will automatically create a new HttpSession instance.

The other method used to access a session object is as follows:

public HttpSession getSession(boolean create)

This method differs from the previous version in that it requires a
boolean value:

� A true value creates a new session object if one does not already exist.

� A false value prevents a session object from being created if one does
not exist.

A false value is really what distinguishes this method from its over-
loaded getSession() method. Instead of creating a new session without
further validation, the developer might want to redirect the user back to a
login page before a session is created. Once created, the session object will
continue to accumulate stored data until the session is terminated.

Data is stored to an HttpSession object as attributes:

public void setAttribute(String name, Object value)

The setAttribute(…) method binds a Java object to a specified key
name. Another servlet can then use the HttpSession object and access its
data by using the following method:

public Object getAttribute(String name)

The getAttribute(…) method uses the key name to find and return the
associated object.

Once again, let’s revisit the OverviewServlet in Listing 6.4 to see how
this approach changes the code. See Listing 6.6.

http://www.sybex.com

216 Chapter 6 � Session Management

Listing 6.6: Using an HttpSession Object with the OverviewServlet

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class OverviewServlet extends HttpServlet {

 public void doPost(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 String name = req.getParameter("name");

 HttpSession session = req.getSession();

 session.setAttribute(“name”, name);

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML><BODY>");

 out.println("<H1>The Game Center</H1>");

 out.println("<P>Press a button to play:</P>");

 out.println("<FORM ACTION=’/games/Checkers/’” +

 “ Method='POST'>");

 out.println("<INPUT TYPE='submit' VALUE=’” +

 “ Checkers‘></FORM>");

 out.println("<FORM ACTION=’/games/Bingo/’” +

 “ Method='POST'>");

 out.println("<INPUT TYPE=SUBMIT VALUE='Bingo'>");

 out.println("</FORM></BODY></HTML>");

 }

}

Using the session object is both a clean and convenient approach to
storing client data. The actual session instance is stored at the web appli-
cation level, whereby each ServletContext maintains its own pool of
HttpSession objects.

http://www.sybex.com

Using the HttpSession Object 217

Remember, each application has one ServletContext, and each context has
multiple sessions for each client that accesses the application.

Retrieving the attributes is as easy as adding them. Listing 6.7 is the
BingoServlet modified to use the session object to either redirect the user
back to a login screen (if the session object is null) or to extract client data.

Listing 6.7: Using an HttpSession Object with the BingoServlet

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class BingoServlet extends HttpServlet {

 public void doPost(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 HttpSession session = req.getSession(false);

 if(session == null) {

 ServletContext sc =

 getServletConfig().getServletContext();

 RequestDispatcher disp =

 sc.getRequestDispatcher(“/servlet/login”);

 disp.forward(req, res);

 return;

 }

 String userName =

 (String)session.getAttribute(“name”);

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML><BODY>");

 out.println("<H1>Your turn: “ + userName +

 “</H1>”);

http://www.sybex.com

218 Chapter 6 � Session Management

 // generate the bingo game

 …

 out.println("For help, click “ +

 “” +

 “ Click here for help”);

 out.println("</FORM></BODY></HTML>");

 }

}

The preceding example demonstrates two ideas. The first is how a servlet
can redirect a request to a login screen if a session does not exist. The second
is how a servlet within the same context automatically receives session data
acquired from previous servlets. This is shown by using the getAttribute(…)
method. The key value name is passed as a parameter to access its associated
object. Remember, the name value was set by the OverviewServlet.

Adding an attribute is as easy as removing one. To unbind an attribute,
call the method:

public void removeAttribute(String name)

After this method is invoked on an attribute, it is no longer accessible by
any servlet within the application.

The final method of interest is the one that enables a servlet to list all the
attributes associated with the current session:

public Enumeration getAttributeNames()

The getAttributeNames() method returns an Enumeration object of
all current attributes. If a session has no attributes, a null value is returned.

Sometimes there is a need to respond to changes to a session’s attributes.
The servlet API provides several session listener classes designed specifically
for this purpose.

HttpSessionBindingListener

By implementing the HttpSessionBindingListener, your application can
be notified when an object is bound or unbound to a session object. The
interface has two primary methods that must be defined:

� valueBound(HttpSessionBindingEvent event)

� valueUnbound(HttpSessionBindingEvent event)

http://www.sybex.com

Using the HttpSession Object 219

The valueBound(…) method is called before the object is made available
through the getAttribute(…) method. In contrast, the valueUnbound(…)
method is called after the object is no longer available via the
getAttribute(…) method of the HttpSession interface. The listener is
passed an HttpSessionBindingEvent, which contains the session object,
the name, and the value of the object either bound or unbound to the session.

Both methods are public and have a void return value.

HttpSessionListener

By implementing the HttpSessionListener, your application can be noti-
fied when a session is created or destroyed. The interface has two primary
methods that must be defined:

� sessionCreated(HttpSessionEvent event)

� sessionDestroyed(HttpSessionEvent event)

As intuition would suggest, the sessionCreated(…) method is called after
the session is produced. In contrast, the sessionDestroyed(…) method is
called to notify the application that the session was invalidated. Each method
provides a handle to the HttpSessionEvent object. This instance provides
access to the session object.

Both methods are public and have a void return value.

To register session listeners to the container, you must include the
listener tag in the web.xml document. For example:

<listener>

 <listener-class>

 ConnectionPoolHandler

 </listener-class>

</listener>

The container determines the type of listener defined and then establishes
an abstract link between the session and the listener. When changes occur to
the session, the appropriate listener is notified.

http://www.sybex.com

220 Chapter 6 � Session Management

For a more detailed explanation of these two listeners, review the discussion
on HttpSession listeners in Chapter 4, “The Servlet Container Model.”

So far, we have covered how to create and maintain sessions by using
several approaches—as well as how to respond to session changes. It is now
time to discuss how sessions are invalidated.

Invalidating Sessions

A session can be invalidated in multiple ways. It can expire automat-
ically, after a specified or default period of inactivity, or a servlet can
explicitly invalidate a session through method calls. Before learning about
these options, it is important to understand the effects on the application
and client when a session is nullified. Basically, all the attribute data is lost.
If you want to retain session information after it is invalidated, it should be
stored to an external resource such as a database or a long-term cookie. For
example, say you have a user who has a login name and password stored
to a database. When they log into the system, a session is created and data
is added to monitor their activity. After they log off or a session is about to
be terminated, the data can be stored to that user’s name or account in a
database for later retrieval. Brokerage firms are known for using this
approach as a means of justifying their user’s transactions.

Logically, you would expect a session object to terminate when the client is
done with an application. You would expect this to occur when the client
leaves the site, terminates the browser, or simply walks away from the appli-
cation for a period of time. Unfortunately, the application is not notified when
such occurrences take place because of the nature of the HTTP protocol.

The HTTP protocol is stateless, and by design will close the connection after
each request to the server. As a result, an application is not notified after each
connection is closed.

Because the server cannot distinguish the intent of the client, the server
will keep the session alive during inactive periods for a default period. To

http://www.sybex.com

Invalidating Sessions 221

change that default time, the web.xml document can be modified to iden-
tify the number of minutes the server will keep the session alive during
inactive periods.

The session-config tag holds all configuration tags for the application’s
session. The session-time tag defines the number of inactive minutes a ses-
sion will exist before the server terminates the object. The following is sample
code for the web.xml file used to change the default termination period:

<web-app>

 …

 <session-config>

 <session-timeout>

 15

 </session-timeout>

 </session-config>

</web-app>

The servlet specification requires that the timeout value be specified in whole
numbers. Some servers allow the use of negative values to indicate that ses-
sions should not be terminated. The server’s documentation will provide
more details on this capability.

A second approach to modifying the life of a session is to have individual
servlets define the inactive time period before a session is destroyed. The
HttpSession interface provides the following methods:

� public void setMaxInactiveInterval(int secs)

� public int getMaxInactiveInterval()

These methods allow fine-grained control. Instead of applying a time
period to the entire application, you can set the time to specific servlets. The
benefit of this approach is that you can customize the timeout period per user
or after certain activities have taken place, such as a lengthy database lookup.

Notice that the time is measured in seconds rather than minutes.

The getMaxInactiveInterval() method returns the value set. If the set
method is not used and the time is set by using the session-timeout tag, the

http://www.sybex.com

222 Chapter 6 � Session Management

getMaxInactiveInterval() method will return the timeout value defined
within the web.xml file.

The third approach is pretty abrupt. The HttpSession interface provides
the following method:

public void invalidate() throws IllegalStateException

After a handle to the session is obtained, the invalidate() method can
be called to close the session and unbind all associated objects. If the session
is already invalidated, then an IllegalStateException object is thrown.

Now that we’ve covered how to end a session, it is important for you to
understand the best practices associated to a session’s timeout period. Given
specific scenarios, you should know whether a session object would be inval-
idated sooner versus later. Table 6.2 breaks down the strategies.

T A B L E 6 . 2 Session Invalidation Strategies

Type Example

Session Time-out

Periods Explanation

Secure web
applications

Online banking Shorter Prevent imposters
from invading
abandoned
systems.

Resource-
intensive
applications

Database
connections

Shorter Enable servers to
reclaim or release
resources quickly.

Non-
resource-
intensive
applications

No database
connections

Longer Maximize conve-
nience rather than
focusing on server
scalability.

Shopping
cart applica-
tions

Stores Longer A timeout might
cause client to for-
get original items.

Applications
that cache
database
information

News sites Depends Shorter period
results in a larger
cache. Longer ses-
sions cause the
database lookup to
process slower.

http://www.sybex.com

Invalidating Sessions 223

Determining how an application should manage a session is achieved by
balancing convenience, user security, and server efficiency. A site that logs a
user off too quickly could become amazingly inconvenient for users who
need to take short breaks from a transaction to check e-mail or take a phone
call. For security purposes, however, you don’t want to keep certain sessions
open for extended periods of inactivity. Imagine a bank web application that
stores the user’s login and account information in a session. If the data
remains available while the user has stepped away from the application for
an extended period of time, there is greater risk of fraud. Finally, efficiency
should be considered. A client session might be using resources that are
“expensive” to the system, such as a database connection. The longer this
object is maintained, the slower the application and server might run. In such
cases, sessions should not have long inactive periods.

Detailed Session Management

Investments, Inc. is interested in providing their customers with online
access to their investment accounts. The application must enable users
to place orders, purchase stocks, and sell stocks. All clients will need to
establish secure login accounts to access their private information. As a
consultant, you are asked to design a session strategy that will best meet
the company’s security needs and provide client convenience.

One of the biggest concerns of the company is to ensure that decisions
made by the client can be validated. A partnering company recently had a
client claim they did not intend to purchase a particular batch of stocks.
Because the company did not maintain every procedure taken by the client,
they could not prove the client was responsible for their own error.

To minimize complexity, you have decided to utilize the session object pro-
vided by the servlet API. Whenever the user triggers an event, all entered
information and trigger options are written to the session. Because security
is a huge priority, inactive periods are kept to a minimum. If the user is in the
middle of a transaction and has to leave the application, they would prefer
to log in again rather than risk the corruption of their account.

http://www.sybex.com

224 Chapter 6 � Session Management

Summary

In this chapter, we covered the various ways to manage a session object.
We began by discussing the ways to monitor or handle session data; those
processes are as follows:

Method 1: Hidden values

out.println("<INPUT TYPE=hidden” +

 “NAME='mailingAddress'” +

 “VALUE=’" + address + "’>");

Method 2: URL rewriting

out.println("<FORM ACTION=’/games/Bingo/" + sessionID +

 "‘ METHOD='POST'>");

or

String urlSession = res.encodeURL("/servlet/MyServlet");

out.println("<FORM ACTION=’" + urlSession + "‘” +

 “ Method='POST'>");

out.println("</FORM></BODY></HTML>");

Method 3: Cookies

Cookie cookie = new Cookie(“JSESSIONID”, “567”);

res.addCookie(cookie);

Finally, you must consider when to store the information to a database.
Normally, the session data is removed after the object is removed. To
retain it for legal purposes, you want to write the session data to a data-
base before the session is terminated. To ensure that the data is written
before the session is invalidated, you create an HttpSessionListener.
After the session is destroyed due to inactivity or the user logs out, which
would cause a call to session.invalidate(), the listener is notified and
the sessionDestroyed(HttpSessionEvent e) method is called. By using the
HttpSessionEvent, you can retrieve a handle to the session object to extract
all the data and write it to a database. The end result is an application that
provides security and a legal trail.

http://www.sybex.com

Exam Essentials 225

Method 4: Sessions

HttpSession session = req.getSession();

We then addressed ways to invalidate a session and the associated strat-
egies. Here are the three ways to invalidate a session:

� <session-config><session-timeout> 60 </session-
timeout></session-config>

� HttpSession.setMaxInactiveInterval(…)

� HttpSession.invalidate()

Finally, we discussed the circumstances in which you should provide long
versus short inactive periods for a session.

Exam Essentials

Be able to identify the interface and methods for a session object retrieved
across multiple requests to the same or different servlets within the same
WebApp. The HttpServletRequest class provides a getSession()
method that returns an HttpSession object for the specific client.

Be able to identify the interface and methods to store and retrieve objects
to and from a session object. The HttpSession interface provides a
setAttribute(String name, Object value) method to store an object
and a getAttribute(String name) to retrieve a bound object.

Be able to respond to an event when a particular object is added to a
session. When an object is added to a session object and implemented,
HttpSessionBindingListener is notified and its valueBound
(HttpSessionBindingEvent e) method is called. When an object is
removed, the listener’s valueUnbound(HttpSessionBindingEvent e)
method is called.

Be able to respond to an event when a session is created and destroyed.
An implementation of the HttpSessionListener will enable your applica-
tion to receive notification of when a session object is created or destroyed.
The interface contains a sessionCreated(HttpSessionEvent e) and
sessionDestroyed(HttpSessionEvent e).

http://www.sybex.com

226 Chapter 6 � Session Management

Be able to identify the interface and methods to expunge a session
object. The HttpSession interface provides the invalidate() method
to terminate a session object.

Identify the most common ways a session object can be invalidated. A
session can be invalidated three main ways. One is by modifying the
web.xml file to define a default timeout period by using the session-
timeout tag. The second process is to specifically modify the session’s time-
out period by using the setMaxInactiveInterval(int sec) method. The
third approach is to call invalidate() on the HttpSession object.

Given that URL rewriting must be used for session management, identify
the design requirements on session-related HTML pages. URL rewrit-
ing is a way to transfer the session ID or data by including it in the URL.
The generated HTML pages must include the URL link plus the session
ID, either directly or encoded by using the encodeURL(String url) or
encodeRedirectURL(String url) method.

Key Terms

Before you take the exam, be certain you are familiar with the follow-
ing terms:

cookie redirect URL

hidden HTML values session object

HttpSession URL rewriting

http://www.sybex.com

Review Questions 227

Review Questions

1. Which of the following best describes an example of URL rewriting?

A. out.println("<INPUT TYPE=hidden NAME='name' VALUE=
BillyBob>");

B. out.println("<FORM ACTION=’/servlet/TestServlet
/BillyBob’ METHOD=POST>");

C. HttpSession session = req.getSession();

D. session.addAttribute(“name”, “BillyBob”);

E. None of the above

2. Which interface provides the method getSession()?

A. ServletRequest

B. ServletResponse

C. HttpServletResponse

D. HttpServletRequest

3. Which of the following methods is used to store objects into a session
object?

A. setData(String name, Object obj)

B. setDataAttribute(String name, Object obj)

C. setAttribute(String name, String obj)

D. setAttribute(String name, Object obj)

4. Which of the following methods is used to expunge a session object?

A. end()

B. destroy()

C. invalidate()

D. kill()

http://www.sybex.com

228 Chapter 6 � Session Management

5. Which of the following is not a valid methodology for session
management?

A. Cookies

B. HttpSession objects

C. Hidden values

D. ServletContext object

6. The session-timeout tag defines the number of inactive _________
a session will exist before being terminated.

A. Milliseconds

B. Seconds

C. Minutes

D. Hours

7. Which of the following statements is invalid?

A. The session timeout value determines how long a session lasts.

B. A session is associated with a client.

C. The setMaxInactiveInterval(…) method is used by the servlet
via the HttpSession object.

D. If a session timeout is not set, the server will terminate sessions by
using a default time value.

8. What is the recommended timeout period that a shopping cart appli-
cation should have?

A. Short

B. Medium

C. Long

D. Irrelevant

http://www.sybex.com

Review Questions 229

9. Which of the following best describes what is returned when the
getMaxInactiveInterval() method is called?

A. The default inactive timeout period, in minutes, for a session to
exist before termination.

B. The number of seconds an inactive session can exist when using the
setMaxInactiveInterval(int sec) method.

C. The default inactive timeout period, in seconds, for a session to
exist before termination.

D. It depends on how the server or application handles the session
timeout period.

10. Which of the following is not a valid way to change the inactive period
of a session before the server terminates the session?

A. <session-timeout>60</session-timeout>

B. setMaxInactiveInterval(500)

C. <session-config>30</session-config>

D. Do nothing

11. Which of the following methods is used to retrieve a bound session
object?

A. getBoundObject(String name)

B. getData(String name)

C. getSessionObject(String name)

D. getAttribute(String name)

12. Which of the following is an example of URL rewriting by using the
encodeURL(String url) method? (Choose all that apply.)

A. http://localhost:8080/servlet/play;jsessionid=567

B. http://localhost:8080/servlet/play

C. http://localhost:8080/servlet/play?jsessionid=567

D. None of the above

http://www.sybex.com

230 Chapter 6 � Session Management

13. Which of the following methods is called when an object is removed
from a session object?

A. valueUnbound(HttpSessionEvent e)

B. valueUnBound(HttpBindingSessionEvent e)

C. valueUnbound(HttpSessionBindingEvent e)

D. valueUnBound(HttpSession e)

14. Which of the following statements is true?

A. The valueBound(…) method is called before the object is made
available through the getAttribute() method.

B. The valueBound(…) method is called after the object is made
available through the getAttribute() method.

C. The valueBound(…) method is called at different times depending
on the server’s preference.

D. None of the above

15. Which of the following listeners is called when a session is destroyed?

A. HttpSessionBindingListener

B. HttpSessionListener

C. HttpSessionChangedListener

D. SessionListener

http://www.sybex.com

Answers to Review Questions 231

Answers to Review Questions

1. B. URL rewriting consists of adding data to the URL. The receiving
servlet can then extract the additional information to utilize the data.

2. D. A session is reliant on HTTP transactions. Because the application’s
communication with the client is through the HttpServletRequest
interface, and the session is not transmitted back to the client, the ses-
sion object is obtained via the HttpServletRequest interface.

3. D. The setAttribute(String name, Object obj) method binds
an object with a related key name to the session object. The other
methods are all illegal.

4. C. The invalidate() method terminates the associated session and
then unbinds any objects bound to it.

5. D. The ServletContext is associated with the web application, not
with the individual client session. Consequently, data stored to the
context is not unique to a client.

6. C. The timeout tag defines the minimum number of minutes of
inactivity that can pass before a session can be inactive before being
terminated by the server.

7. A. A session timeout value tells the amount of time the session will
stay alive only during an inactive period, not its entire life.

8. C. Because a client usually collects multiple items in a cart, a short-
lived inactive period could cause problems and irritation to the user.
This could result in a loss of business because the user might not want
to return or might forget what they already selected.

9. D. Depending on how the session timeout period is set, the
getMaxInactiveInterval() method will return the number of
seconds that the inactive session will exist before termination.

10. C. The session-config tag requires the session-timeout tag to
define the number of minutes a session can be inactive. As for doing
nothing, the server usually has a default inactive period defined
automatically.

http://www.sybex.com

232 Chapter 6 � Session Management

11. D. The getAttribute(String name) method returns the object
bound to the session by using the associated name reference.

12. A, B. The encodeURL(String url) method encodes the specified
URL by including the session ID in it. If encoding is not needed, the
method returns the URL unchanged.

13. C. The valueUnbound, lowercase b, method is called when an object
is unbound from the session object. An HttpSessionBindingEvent is
passed to the method containing the session object, and the name and
value of the object removed can be gathered from this event object.

14. A. The servlet specification mandates that the valueBound(…)
method should be called before the object is made available through
the getAttribute() method.

15. B. The HttpSessionListener is called when a session is created and
destroyed.

http://www.sybex.com

Chapter

7

Secure Web
Applications

THE FOLLOWING SUN CERTIFIED WEB
COMPONENT DEVELOPER FOR J2EE EXAM
OBJECTIVES COVERED IN THIS CHAPTER:

�

6.1 Identify correct descriptions or statements about the

security issues:

�

Authentication, authorization
�

Data integrity
�

Auditing
�

Malicious code
�

Website attacks

�

6.2 Identify the deployment descriptor element names, and

their structure, that declare the following:

�

A security constraint
�

A web resource
�

The login configuration
�

A security role

�

6.3 Given authentication type: BASIC, DIGEST, FORM, and

CLIENT-CERT, identify the correct definition of its mechanism.

http://www.sybex.com

A

s computer technology advances, the number and type of
services available over the network increases. Convenience, however, has
a price. The transfer of critical information creates business vulnerabilities
that many wish to overlook. For numerous companies, the one area that
requires the most attention receives the least: security. Security is a crucial
aspect of any application that exchanges privileged information. In this
chapter, we will address the basic weaknesses a system faces and identify
key elements that should be considered to create a secure system and limit
exposure to outside threats.

Security Issues

M

ost people find entertainment in sports, movies, talking, and other
benign activities. However, many individuals receive amazing satisfaction
and gratification from invading systems and either corrupting or capturing
vital data. These individuals, known as

hackers

 or

attackers

, thrive on
system vulnerabilities. Utilizing various hacker tools, they are often able
to scan systems to locate holes through which they can enter and attack. For
many it’s a game, and for others it’s personal. Regardless of the motive,
securing your web application should be a priority to ensure the integrity of
your data and application. This process begins by implementing the four
basic security principles:

�

Authorize

�

Authenticate

�

Provide data confidentiality

�

Monitor access

http://www.sybex.com

Security Issues

235

In addition to these principles, we will also discuss the following security
concerns:

�

Malicious code

�

Website attacks

Authorization

The onset of the Internet caused network security to become a huge concern.
When Java first hit the market, it was known as the Internet language. It
marketed applet development as the product that provided a secure environ-
ment for clients accessing unknown sources over the Internet. However,
restricting applet access to the client system was not a successful solution to
security. Instead, other means of protection were needed to enable autho-
rized access without limiting functionality.

The Java language has matured since its creation and now offers several
technologies to authorize an outside user access to a server application. The
concern is no longer focused on the applet client, but rather a J2EE client
(servlet or JSP) attempting to access an enterprise application.

When a client requests information, the server has no way of determining
who is making the request. The client’s IP address fails to define the user
because that user can attempt to access a server from various computers. In
addition, it is easy for a user to falsify their IP address to disguise their identity.
Consequently, the server must determine the client via user authorization,
which we’ll explain in just a moment.

Figure 7.1 provides a visual representation of these two approaches to
security: the client-server approach, in which the aim is to secure the client,
and the J2EE approach, in which the aim is to secure the server.

F I G U R E 7 . 1

Security strategies

Client-server security J2EE security

Enterprise app

Client

Server

Secure application by
determining who is
executing the code

N

Client

N

Client

N

Secure clients
from outside attacks

Authenticate

http://www.sybex.com

236

Chapter 7 �

Secure Web Applications

Our focus is on J2EE security and the processes used to protect the
web application from false or unwanted clients. Each user within a secure
system must be mapped to an identifier, also known as a

principal

. A prin-
cipal is usually recognized by their user ID when logging into a system.
This process, whereby the client makes a claim to be a particular user,
is called

authorization

.

Authentication

After the client identifies themselves, they must provide evidence to prove
they are truly who they claim.

Authentication

 is the process whereby the
client supplies credentials to prove their identity. Most often proof is provided
via a password. Other examples include the swipe of a card, retinal scans,
fingerprints, or digital certificates located on the user’s system.

Data Integrity

Access control fails if others can gain access to password or authentication
information as it is transmitted over the network. Encrypting information
protects data and provides another level of security. The protocol called
Secure Sockets Layer (SSL) was developed to use public key cryptography
to encrypt communication between the client and server. A

public key

 is an
encryption scheme, either generated by software or issued by a third party,
used to encode or decode information. Sitting between the HTTP and TCP/IP
protocol, SSL encrypts the data to prevent hackers from acquiring confi-
dential information. Anyone attempting to intercept the data transfer will
simply encounter indecipherable nonsense.

Java Authentication and Authorization Service

With the introduction of the Java Authentication and Authorization Service
(JAAS) API, authentication can be handled by utilizing pluggable modules
configured to authenticate by using something as simple as a username
and password or something more complex, for example, a SmartCard reader.
JAAS provides an enterprise application a variety of services for authenti-
cation on the back end. As vendors standardize this API, you will see more
and more applications using complex pluggable modules rather than devel-
oping basic authorization code. JAAS is bundled in the Java Developer
Kit 1.4 or available separately at the Sun website.

http://www.sybex.com

Security Issues

237

Two main security concerns are solved when using public key crypto-
graphy. The first is confidentiality. Because the data is encrypted, you are
guaranteed privacy. The second is integrity. As long as the information can
be decoded properly by the intended recipient, you can be fairly sure that the
data was not tampered with during transmission.

Auditing

Auditing users is a way of ensuring that users who log in successfully access
only those resources that are appropriate to their role. The servlet security
model is

role-based

. This means that users are assigned to roles, such as
Manager, Employee, or Guest. Each role is assigned certain privileges, and
access is granted to roles rather than users. To determine whether to provide
a client with access to a given resource, the server:

1.

Discovers which roles are available

2.

Checks to see which roles are allowed

3.

Checks to see whether the user is assigned to any available roles

Notice that security evolves around the role rather than the user. By using
a server-specific tool, users are mapped to particular roles. The granularity
of permissions can be defined at a finer level. By using the tool or the deploy-
ment descriptor, you can specify the method permissions for each role
as well.

Access for each role can be denoted in two ways: through declarative
security or programmatic security.

Declarative Security

Declarative security

 uses the deployment descriptor to specify which resource
a role can access. The advantage of this approach is that implementing security
is independent of source code; when security changes must be made, there is no
need to recompile or make changes to the code.

By including the

security-constraint

 tag in your

web.xml

 file located
in the

/WEB-INF

 directory, you can define each resource and the roles that
have access. Here is an example of how to restrict a particular directory
to users that have the role of Administrator.

<security-constraint>

 <web-resource-collection>

http://www.sybex.com

238

Chapter 7 �

Secure Web Applications

 <web-resource-name>

 Admin area

 </web-resource-name>

 <url-pattern>

 /admin/*

 </url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>

 Administrator

 </role-name>

 </auth-constraint>

</security-constraint>

The

web-resource

 tag defines the human-language name for the
resource, and

url-pattern

 identifies the location of the resource. Within the

security-constraint

 tag, you can then define which roles have access to
the identified resources by using the

auth-constraint

 tag. Do keep in mind
that you can list more than one

role-name

 within the authorization group.
Users and roles are usually mapped to an

access list

 stored by the server.
Sometimes it’s a simple file containing each user’s login name, password,
and role. Other times it’s stored as a database with encrypted employee
information.

When discussing BASIC authentication later in this chapter, we will go into
more detail on user mapping and show you how Tomcat manages user

role information.

Programmatic Security

At times declarative security is not specific enough. You might need to limit
access within a particular method based on a user. This kind of granularity
requires security to extend itself to the method source code, which is done
by using

programmatic security

. Within a method such as

doGet(…)

, you
might want to determine who is making the request and then, based on the
result, determine whether to execute a particular response.

http://www.sybex.com

Security Issues

239

There are three Java methods within the

javax.servlet
.HttpServletRequest

 class that provide information about the user
making a request:

String

getRemoteUser()

 returns a String of the username used to
log in to the website.

boolean

isUserInRole(String

role)

 indicates whether the user
accessing the servlet is assigned to the passed-in role.

Principal

getUserPrincipal()

 returns a

java.security
.Principal

 object representing the user who is logged in.

Here is an example of how programmatic security can filter activity based
on the user:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class AccessServlet extends HttpServlet {

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 String username = req.getRemoteUser();

 if (username == null) {

 out.println("You are not logged in.");

 } else if ("Mary".equals(username)) {

 out.println("Hello Mary,

 glad you can join us");

 } else {

 out.println("Hello " + username);

 }

 out.close();

 }

}

http://www.sybex.com

240

Chapter 7 �

Secure Web Applications

Depending on who makes a

GET

 request, the message returned is different.
Mary gets the most personal message, whereas general users simply get a
basic “Hello.” If you are not logged in,

getRemoteUser()

 returns

null

.
This example has Mary assigned to the role of GeneralUser. With this said,
the deployment descriptor would look like the following:

<security-constraint>

 <web-resource-collection>

 <web-resource-name>

 AccessServlet

 </web-resource-name>

 <url-pattern>

 /serlvet/AccessServlet

 </url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>

 GeneralUser

 </role-name>

 </auth-constraint>

</security-constraint>

All users assigned to the role of GeneralUser have access to the
AccessServlet. Within the servlet, we use programmatic security to deliver
a different message depending on the user. Each tag will be thoroughly
discussed in the BASIC authentication section.

As you can see, declarative and programmatic security can be used
together. The downside of defining security measures within code is that
changes to security will result in the need to recompile the code.

Malicious Code

In the technical world, the term malicious code is synonymous for virus.
Unfortunately, many people thrive on developing software that locates
system vulnerabilities and attacks. Sometimes the code is kind enough to
simply overflow a particular folder with messages of love, but other times
viruses have been known to wipe out entire hard drives. There are no flags
or method calls that can protect your system against these types of assaults.
One solution is the use of antivirus software. Antivirus software is critical in

http://www.sybex.com

Authentication Types 241

keeping your system safe from potential code attacks. Simply installing the
software is not enough. Staying current is most important. Because new
viruses are being developed every day, the software must be updated on
a regular basis. The goal is to stay one step ahead of the attacker.

Website Attacks

When establishing a website, assume the site will be attacked. Even if the
information isn’t critical, hackers often use systems for the sole purpose of
hiding their trail. By bouncing from machine to machine, they can arrive at
a destination with a trail too difficult to trace. One form of protection is the
utilization of a firewall.

Firewalls block network traffic by limiting access to most all ports and
unauthorized users. Once again, the firewall requires the client to provide
proper authorization to enter the system. Unfortunately, firewalls are not
foolproof in that there are ways to bypass security by impersonating
another.

Another consideration to help against attacks is the installation of intru-
sion detection tools. There are a number of tools you can use to detect
attackers. Packet sniffers, for example, enable you to view all the traffic on
your network. If any activity looks odd, you can use your firewall to block
the intruder.

At a minimum, a protected system requires firewalls, intruder detection,
and antivirus software. All these preventive techniques can succeed only if
user authentication isn’t compromised. In the next section, we will discuss
the different ways to authenticate a user.

Authentication Types

The web container provides four authentication techniques to deter-
mine client validity:

BASIC authentication requires the client to provide a user login name
and password in order to access protected data.

FORM authentication adds a bit of elegance to logging in. It enables an
application to request authorization by using a customized HTML page.

http://www.sybex.com

242 Chapter 7 � Secure Web Applications

DIGEST authentication provides a little bit more security in that it
encrypts the login name and password to prevent others from acquir-
ing this privileged information while it travels over the network.

CLIENT-CERT authentication stands for client certificate. This
approach requires the client to provide a digital certificate containing
information about the issuer, signature, serial number, key type, and
more. Basically, it is a complex object used to identify the client.

In this section, we’ll show you how each technique is used to gain autho-
rization to the web application.

BASIC

The simplest form of authentication is known as HTTP Basic authentica-
tion, or BASIC. As its name indicates, an application utilizing this form
of certification asks for basic information, such as the user’s login name and
password. The data is then transferred to the server by using BASE64
encoding for validation. The good news is that this process is easy to
implement; the bad news is that it doesn’t offer much security beyond
authenticating the client. If intercepted, the username and password could
easily be decoded by running a simple BASE64-decode on the data. If a web-
site provides information that is not critical for an exclusive group, BASIC
could be an option.

When a user attempts to access information protected in this fashion, the
browser will automatically display a dialog box requesting the user’s login
name and password. This process is automatic and cannot be customized.

You must identify within the deployment descriptor the code requiring
protection, the type of authentication, and who is to gain access. When
the client attempts to access this code, a dialog box similar to the image
in Figure 7.2 appears.

F I G U R E 7 . 2 BASIC authorization dialog

http://www.sybex.com

Authentication Types 243

One of the benefits Java offers is the ability to define security outside the
application source. There is no need to recompile Java code when security
options are changed. When using servlets, the security permissions are
defined within the web.xml file. Before discussing the needed DTD elements,
we begin by looking at a simple servlet:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class PrivateServlet extends HttpServlet {

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 out.println("You are accessing

 private information");

 }

}

This servlet serves no other purpose but to print a message. Our goal is to
restrict access to this servlet to a small group of privileged users. To accom-
plish this task, we must modify the web.xml file to include our security
requirements. There are three groups to include, and their order is critical:
security-constraint, login-config, and security-role.

The security-constraint Element

The first tag group that must be defined is <security-constraint>
</security-constraint>. These tags are critical in that they define what
code is protected. The following sample shows what elements are included
within this constraint:

<security-constraint>

 <web-resource-collection>

 <web-resource-name>

 SecretProtection <!-- name for tool-->

 </web-resource-name>

http://www.sybex.com

244 Chapter 7 � Secure Web Applications

 <url-pattern>

 /servlet/PrivateServlet <!--protected servlet-->

 </url-pattern>

 <url-pattern>

 /servlet/Secret

 </url-pattern>

 <http-method>

 GET <!-- protected http method -->

 </http-method>

 <http-method>

 POST

 </http-method>

 </web-resource-collection>

 <auth-constraint>

 <role-name>

 Broker <!-- role with access -- >

 </role-name>

 <role-name>

 Administrator

 </role-name>

 </auth-constraint>

</security-constraint>

Within the security-constraint, there are two sub-elements:

� web-resource-collection

� auth-constraint

The web-resource-collection element defines three important
features of the protected code:

The web-resource-name is the name used by a tool to reference the
servlet. The name must be specified even if a tool is not used.

The url-pattern indicates the URL pattern to the source code
requiring protection. If alias names are used to reference servlets,
those too should be included.

The http-method indicates all HTTP methods that should have
restricted access. If no HTTP method is specified, then all methods are
protected.

http://www.sybex.com

Authentication Types 245

Remember: the methods defined within the http-method element apply to all
servlets defined by the url-pattern element.

The auth-constraint element defines any number of roles that can
have access to the protected code. Remember, all users belong to roles.
For example, a user with a login of Bob14 can belong to the Broker and
Employee roles. This information is usually defined within a server-specific
access list or database. Tomcat uses the conf/tomcat-users.xml file to
characterize each group. The file might look similar to the following:

<tomcat-users>

 <user name="Mandy" password="secret" roles="Broker" />

 <user name="Tim21" password="secret"

 roles="Administrator" />

 <user name="Bob14" password="secret"

 roles="Broker, Employee" />

</tomcat-users>

The login-config Element

The second tag group is defined within the <login-config></login-
config> tags. It is here that the type of container authentication is defined.
The following sample shows what elements are included within this constraint:

<login-config>

 <auth-method>

 BASIC <!--BASIC, DIGEST, FORM, CLIENT-CERT -->

 </auth-method>

 <realm-name>

 Default <!-- Optional, used for BASIC -->

 </realm-name>

</login-config>

Within the login-config tags, there are two sub-elements:

� auth-method

� realm-name

The auth-method element is used to define authentication types of Basic,
Digest, form-based, and client-side certificates. Specifically, the methods
must be defined as BASIC, DIGEST, FORM, or CLIENT-CERT. Keep in
mind that these method types are case sensitive.

http://www.sybex.com

246 Chapter 7 � Secure Web Applications

The realm-name element is used by the BASIC authentication to identify
a specific area of a website. For example, if there is a member area of the
website, this value might be “Members Area.”

The security-role Element

The final basic security tag group is defined by the <security-role>
</security-role> tags. Within these elements are defined roles the appli-
cation might use to limit access. Generally, this listing is beneficial to tools
because they provide the application assemblers or deployers a list of roles
to select from to assign to methods.

<security-role>

 <description>

 Represents all fulltime employed individuals.

 </description>

 <role-name>

 Employee

 </role-name>

</security-role>

Within the security-role tags, there are two sub-elements:

� role-name

� description

The role-name tag is required and defines available roles for the appli-
cation to utilize. The description tag, as the name implies, provides a
description of the particular role being listed.

In summary, BASIC authentication requests client authentication when
a request for protected data is made. To set up this process, the web.xml
file must be configured to include security-constraint information,
which defines what data is protected, login-config data, which defines
the type of authentication the container should implement, and finally
it must define the available roles by using the security-role tag.

FORM

In an attempt to provide more elegance to the art of validating users, Form-
based authentication is available. Rather than rely on the browser’s default
pop-up dialog to request the user’s login name and password, the application

http://www.sybex.com

Authentication Types 247

can provide its own custom form to request this information. The benefit
to the Form approach is aesthetic. Essentially you can guarantee that all
users, regardless of which browser they use, will see the same login screen
(possibly with the company’s logo displayed).

Several requirements are necessary to ensure that the custom form com-
municates correctly with the server’s access list:

� The form method must be POST.

� The action or URL must be defined as j_security_check.

� The name attribute for the username must be j_username.

� The name attribute for the password must be j_password.

Utilizing these values enables the server to access the correct attributes
given the standardized names. Let’s take a look at a simple custom form.
We’ll call it Login.html:

<HTML>

 <BODY>

 <P>Welcome to my custom login screen!</P>

 <P>Name: <INPUT TYPE=’text’ NAME=’j_username’

 SIZE=15></P>

 <P>Password: <INPUT TYPE=’password’ NAME=’j_password’

 SIZE=15></P>

 <P><INPUT TYPE=’submit’ VALUE=’OK’></P>

 </FORM>

 </BODY>

</HTML>

As you can see, each name is defined by the standard rules and results in
a custom form that can be used for login purposes. See Figure 7.3.

F I G U R E 7 . 3 Custom authentication form

http://www.sybex.com

248 Chapter 7 � Secure Web Applications

If the user attempts to log in but fails, you can no longer rely on the
browser’s error dialog box. Consequently, when creating a login form, you
must also create an error form. Once again, we will keep it very simple and
define the following Error.html page:

<HTML>

 <BODY>

 You failed to log in successfully.

 Hit the “Back” button to try again.

 </BODY>

</HTML>

On their own, the Login.html and Error.html pages are not linked—
meaning when the user presses the OK button, there is no direct connection
to the error page. Instead, the two pages “communicate” via an intermedi-
ary. Basically, when someone tries to log in, the server verifies authenticity
of the client by using j_username to get the username and then using
j_password to get the password. If there is a failure, the server must be able to
find the error form to display. The connection between the code and server
is made within the web.xml file. Once again, you need to make modifica-
tions to this document to inform the server of the name and whereabouts
of the login and error pages used during FORM authentication.

The one area that changes is within the login-config tags. In addition
to identifying the type of authentication, you must also define the location
for the custom login page and custom error page:

<login-config>

 <auth-method>

 FORM

 </auth-method>

 <form-login-config>

 <form-login-page>

 /AuthenticationForm.html

 </form-login-page>

 <form-error-page>

 /Error.html

 </form-error-page>

 </form-login-config>

</login-config>

Within the login-config tags, you not only define the type of authenti-
cation, but if it is of type FORM, then you include a sub-element group
called form-login-config.

http://www.sybex.com

Authentication Types 249

The form-login-config Element

Fundamentally, this tag is used to help the server locate the forms to display
during appropriate times. The two sub-elements are as follows:

� form-login-page

� form-error-page

As their names indicate, the form-login-page tag defines the login page
that should be used when a request for protected code is made. This page is
displayed instead of the default login dialog box used with BASIC. Similarly,
the form-error-page defines the error page that will be displayed if autho-
rization is denied.

Customizing your login and error page displays is fairly easy. The trick is
to follow the naming conventions within your login pages and modify the
deployment descriptor to locate those files.

DIGEST

As we have said, one of the greatest security limitations of BASIC authenti-
cation is that information is transferred over the network in simple BASE64-
encoded text. Someone snooping the line can easily capture a client’s user-
name and password to gain access to the site. DIGEST adds an extra layer of
security when authenticating the user. Instead of transferring the password,
the server creates a nonce, a random value that is unique. An example of a
nonce could be the client’s IP address followed by a time stamp and some
random data. It might look something like this:

127.0.0.1: 86433665446: dujehIIJRTGDKdkfj

The server sends the nonce to the client, and then things get interesting.
The client uses a secure encryption algorithm to create, or hash, a digest.
A digest is a one-directional, encrypted value that represents data. In this
case, the digest consists of the nonce, username, and password. Figure 7.4
shows the simple process used to generate a digest.

F I G U R E 7 . 4 Creating a digest

Digest
algorithm

Nonce
Username
Password

Digest

http://www.sybex.com

250 Chapter 7 � Secure Web Applications

After the digest is generated, the client sends the digest back to the server.
The server then uses the nonce it sent originally and the username and pass-
word on file to generate a digest on its end. The server compares the digest
sent by the client to the one generated locally. If they match, the client
can access the protected resource. If not, access is denied.

In place of transferring the password over the network, the digest is trans-
mitted. Using the same algorithm type, the server computes a digest of the
password for the particular user and compares values to see whether they
match. If so, the client is valid. Figure 7.5 illustrates the process.

F I G U R E 7 . 5 The DIGEST process

The nonce is critical in that it protects against attackers who intercept the
hash value and intend to reuse it at a later date. Because the nonce contains
a time stamp and a random value, the request will most likely time out and
be removed from the server at a later time, causing the client’s request to be
invalidated.

Unix administrators are familiar with password encryption. Often pass-
words are stored in a secure file. However, if someone manages to gain
administrative access, they can view this information. Because passwords
are considered extremely sensitive and critical data, the OS encrypts them
so even the administrator cannot know these values. If an attacker captures
the hashed password/digest, they will not have access to the user. Instead
they will need to guess various passwords and generate a digest to see
whether there was a match. This is because a digest is considered a one-way
transformation of data.

Server
Client

1. Server generates and sends nonce.

5. Server validates or invalidates the client.

2. Client uses nonce, username, and
 password to generate digest and
 then sends it.

3. Server uses nonce, username,
 and password to generate its
 own digest.

4. Server compares client digest
 to server-generated digest.

http://www.sybex.com

Authentication Types 251

Most browsers implement DIGEST authentication in their own manner,
making it difficult to set up and use. If it were easier, then HTTP authenti-
cation could widely provide useful low-level security.

CLIENT-CERT

HTTPS Client authentication, or CLIENT-CERT, is the strongest form of
authentication. HTTPS is HTTP over Secure Socket Layer (SSL). Instead
of simply providing a username and password, the client must provide that
information in addition to a personal certificate for authorization to access
the server.

A client certificate is an encrypted object, known as a signature, person-
alized with data for a particular person. It provides a secure way to authen-
ticate users communicating over a network. Instead of simply logging into
a system and providing a password, which can be decrypted, the user
provides a certificate that can be read only by using a special key. Client
certificate technology is comprised of two pieces: a digital signature and
a digital certificate.

A digital signature is an object that associates an individual with a partic-
ular piece of data. It adds one more level of security to a digest. Not only is
it providing authentication, but it also links the user to the data. This means
that the request cannot be intercepted, re-signed, and sent by an imposter
without the server realizing the error.

Keys are a critical part of understanding how the validation process
occurs. Prior to any login attempts, the client generates two keys. The first is
a private key that holds the individual’s authentication code and is stored
in a secure location, on a SmartCard or in a file. It should be known and
accessed only by its owner. The second is a public key given to all receivers
to validate the authenticity of the user attempting to log in. When using serv-
lets, the server stores all public keys of users who can access the system in a
database or Lightweight Directory Access Protocol (LDAP) directory server.
Then when a client tries to access a protected site, they are prompted to pro-
vide a username and password. When transmitting this information, a digest
is generated along with a digital signature by using the client’s private key.
The digest is then sent to the server, which uses its public key to unlock the
signature. If the public key is a forgery and not part of the key pair used
by the private key, the signature will not unlock, and the user is invalidated.
Figure 7.6 demonstrates the process.

http://www.sybex.com

252 Chapter 7 � Secure Web Applications

F I G U R E 7 . 6 Digital signatures

Digital signatures provide integrity by guaranteeing that the data hasn’t
changed since it was signed. Basically, it is impossible for an attacker to re-
create the signature with a new set of data without access to the user’s private
key. Any alteration of data invalidates the digital signature. In addition, a
digital signature also provides authentication because after someone signs
something, they cannot deny having done so.

Scenarios that were previously threatening pose no or little threat when
using certificates. Here are some potential scenarios:

� If the object is retrieved during its commute to its destination by an
unauthorized receiver, that person will be unable to extract its infor-
mation because they lack the key.

� Because the certificate also has a time stamp associated with it, a
retrieved certificate is invalidated after a period of lapsed time; thus it
cannot be forged during future login attempts.

� Obtaining a stolen public key serves no purpose because although it
allows you to verify the person sending the certificate, it does not grant
you access to the system they are attempting to access.

Unfortunately, digital signatures are not 100 percent safe. When a public
key is delivered to a user, there is a possibility that an attacker will acquire
this value. You cannot be certain your public key belongs to the client
intended unless the key was transferred in an absolutely secure environment.
A common problem is known as man-in-the-middle attacks. Someone places
themselves between the client and server and manages to intercept the

Digital
algorithmMessage

Signature
algorithmDigest Digital

signature

Private key

Signature
algorithm

Digest and
message

Digital
signature

Public key

Receiver (server)

Sender (client)

http://www.sybex.com

Authentication Types 253

authentication and pose as a valid user. If they manage to intercept and alter
the public key, then they can configure the public key to recognize a false
signature. The goal is to prevent them from manipulating the public key
maintained at the target site. One solution to protecting a public key during
its transfer is to encrypt communication or use direct connections; the other
is to use digital certificates.

Digital certificates attach identity to a public key. They act like a driver’s
license or passport in that they prove you are who you claim to be. A certif-
icate contains your public key and some additional information signed by a
third party’s private key. Companies such as Versign and Thawte, known as
a certificate authority (CA), sell certificates to individuals to enable them to
sign their public key. Usually a certificate contains the information outlined
in Table 7.1.

If a single attribute is changed, the certificate is invalidated. When information
needs to be altered, the CA needs to reissue a new certificate.

T A B L E 7 . 1 Certificate Information

Information Description

Version Version of the certificate (v1, v2, v3). Each version
contains different attributes.

Serial number Integer value unique to the CA issuing the
certificate.

Signature algorithm Algorithm used to sign the certificate.

Subject Whom the certificate is issued to. This item can
include a common name, organization or organi-
zational unit, the organization’s location, state,
and country.

Subject public key Public key of the certificate. This is the most
important piece.

Signature Signature signed by the CA.

http://www.sybex.com

254 Chapter 7 � Secure Web Applications

Instead of sending a public key to intended recipients, you transfer a cer-
tificate. If the certificate is intercepted and altered, the certificate and the key
within are invalidated. Consequently, the man-in-the-middle technique fails
to compromise the client or server. Of course, there is room for certificate
corruption. If the certificate authority is not reliable, they can create forged
certificates, allowing attackers to act as imposters.

For the most part, client certificates provide the most security but do
require the most work. When data transactions are critical and security
is essential, a client certificate ensures authentication, authorization, data
integrity, and confidentiality. By designing a site where the client must ini-
tially provide a certificate and then a digest with each request, you can be
almost fully assured that the client is who they say they are and the data they
are sending is in its original form.

When Security Is a Priority

You have just been hired to work on securing a website managed by the
government. Fairly secretive information is available on this site for officials
to access while off site. Your role is to ensure that only authorized users are
granted access and to protect the information from malicious attacks.

Due to the sensitive nature of the information, high security is a priority—
which means BASIC, FORM-based, and DIGEST authentication are not
options. Mandating certificates becomes the primary option. Each user’s pri-
vate key can be stored on a SmartCard; however, that limits usage to systems
that have readers for this device. For systems without this mechanism, you
could provide users a CD-ROM containing their authentication information.

Because most browsers fail to automatically support client authentication,
you must develop the code to handle the security measures. As a precaution-
ary measure, this machine should be separate from the main system, and at
a minimum a firewall would sit between the two. Multiple firewalls betweens
layers of systems and security clearance will further secure the system
against harmful attacks. In case others try to attack, the systems should be
audited regularly. By using advanced tracking tools, you can notify appropri-
ate members when security breaches are made. Because of the multiple lay-
ers of the system, the intruders can hopefully be stopped before accessing
critical information. Through these checks and balances, an application can
provide significant security and access to its intended audience.

http://www.sybex.com

Deployment Descriptor Tags 255

Deployment Descriptor Tags

In this chapter, we’ve discussed almost a third of all the deployment
descriptor tags the exam will cover. Now that you’ve read about each piece
separately, we want to provide a final sample of how security is handled as
a whole within the web.xml file. See Listing 7.1.

Listing 7.1: Web.xml—Authentication

<web-app>

 <servlet>

 <servlet-name>

 secret

 </servlet-name>

 <serlvet-class>

 SalaryServlet

 </servlet-class>

 </servlet>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>

 SecretProtection

 </web-resouce-name>

 <url-pattern>

 /servlet/SalaryServlet

 </url-pattern>

 <url-pattern>

 /servlet/secret

 </url-pattern>

 <http-method>

 GET

 </http-method>

 <http-method>

 POST

 </http-method>

http://www.sybex.com

256 Chapter 7 � Secure Web Applications

 </web-resource-collection>

 <auth-constraint>

 <role-name>

 manager

 </role-name>

 </auth-constraint>

 </security-constraint>

 <login-config>

 <auth-method>

 FORM

 </auth-method>

 <form-login-config>

 <form-login-page>

 /AuthenticationForm.html

 </form-login-page>

 <form-error-page>

 /Error.html

 </form-error-page>

 </form-login-config>

 </login-config>

</web-app>

Part of your success on the exam depends on your knowledge of each tag,
its order, and purpose. Table 7.2 lists all the tags used for security in the
deployment descriptor.

T A B L E 7 . 2 Security Tags

Element Description

security-constraint A general element that defines pro-
tected resources and roles.

web-resource-collection A general element that defines the pro-
tected resources.

web-resource-name The human-language name used to
reference the protected resource.

url-pattern The location of the protected resource.

http://www.sybex.com

Summary 257

Summary

In this chapter, we covered the key elements a developer should con-
sider to ensure security for their application. Depending on the private
nature of the web application, you should consider the following issues:

� Authorization

� Authentication

� Data integrity

� Auditing (access control)

http-method The methods that the defined roles can
access. If no http-method is defined, the
default implicitly lists all HTTP methods.

auth-constraint A general element that defines all roles
with access to the protected resources.

role-name The name of the group with access.

login-config A general element that defines login
configuration information.

auth-method The type of authentication used by the
application.

form-login-config A general element that defines the con-
figuration information pertaining to
forms used in FORM authentication.

form-login-page The location and file used to display a
custom authentication page.

form-error-page The location and file used to display a
custom error page.

T A B L E 7 . 2 Security Tags (continued)

Element Description

http://www.sybex.com

258 Chapter 7 � Secure Web Applications

You should consider each topic and aim for a balance between conve-
nience and importance. Servlet containers offer four types of authentication
used to ensure different levels of security:

BASIC The most simple and least secure is HTTP Basic authentication.
It requests the user’s login name and password and transmits the data in
a simple encoded format.

FORM To avoid using the browser’s authentication dialog, you can use
Form-based authentication. This process enables you to customize your
authentication and error pages to suit your website.

DIGEST Added security can be achieved through HTTP Digest authen-
tication. Instead of transmitting your password over the network, a digest
is submitted between client and server.

CLIENT-CERT The last type discussed is HTTPS Client authentica-
tion. It offers the most security and provides the most guarantees by
requiring clients to have a private key and a corresponding certificate
in order to be authenticated.

To enable security in the application, modifications to the web.xml
file are required. Several tags are used to identify the resources that are
protected, the location of those resources, the type of authentication used,
the methods that can be accessed, and the roles a user must belong to for
privileged access.

Exam Essentials

Be able to describe the security issues associated with authentication and
authorization. Validating the user is a critical measure that you must
consider for most applications. Not only must the client claim to be a par-
ticular user, but they must also provide evidence, such as a password or
certificate, to prove their identity. Once authenticated, their roles will
define what files they are authorized to access.

Be able to describe the security issues associated with data integrity.
When information is transferred over the network, there is potential for
interception. Without some form of encryption or security measures, an
attacker can intercept the data prior to its arrival for storage or to make
alterations before sending it back on its way.

http://www.sybex.com

Exam Essentials 259

Be able to describe the security issues associated with auditing. Rather
than allowing all users to access to all resources, it is important to estab-
lish roles, which allow users to utilize only necessary resources. Auditing
user access helps ensure security by limiting access to protected areas.

Be able to describe the security issues associated with malicious code.
Code that is sent with the intent to do harm is considered malicious code.
The most common form is known as a virus. To avoid such attacks, anti-
virus software is recommended to screen incoming data. If the code is
coming from within, authorizing each user is a way to place responsibility
on the source.

Be able to describe the security issues associated with website attacks.
Again, there is a great possibility that attackers will want to infiltrate a
website for the purpose of gathering or destroying information. Authen-
ticating the user makes this option a little more difficult, but firewalls are
a must as well. They shield critical information from the end user or the
attacker.

Be able to identify the deployment descriptor element names and their
structure for a security constraint. The security-constraint tag is
used to define protected resources and which roles have access to those
areas. It contains two main sub-elements: web-resource-collection
and auth-constraint.

<security-constraint>

 <web-resource-collection>

 </web-resource-collection>

 <auth-constraint>

 </auth-constraint>

</security-constraint>

Be able to identify the deployment descriptor element names and their
structure for a web resource. Protected resources are referenced by the
web-resource-collection. Within this tag are sub-elements called web-
resource-name, used to define the name of the protected resource,
url-pattern, used to define the location of the protected resource, and
optionally http-method, used to define the methods with access.

<web-resource-collection>

 <web-resource-name>

 </web-resouce-name>

 <url-pattern>

http://www.sybex.com

260 Chapter 7 � Secure Web Applications

 </url-pattern>

 <http-method>

 </http-method>

</web-resource-collection>

Be able to identify the deployment descriptor element names and their
structure for login configuration. The login-config tag is used to
define authentication rules for the application. The sub-element auth-
method identifies the type of authentication. If it is of type FORM, then
you must also include the form-login-config tag to define the custom
login and error pages.

<login-config>

 <auth-method>

 </auth-method>

 <form-login-config>

 <form-login-page>

 </form-login-page>

 <form-error-page>

 </form-error-page>

 </form-login-config>

</login-config>

Be able to identify the deployment descriptor element names and their
structure for a security role. Access is granted to protected resources
based on roles. The auth-constraint tag uses the role-name tag to define
which roles have access to the protected resources of the application.

 <auth-constraint>

 <role-name>

 </role-name>

 </auth-constraint>

Be able to identify the correct definition of BASIC authentication.
HTTP Basic authentication relies on the default authentication dialogs of
the browser to request the user’s login information.

Be able to identify the correct definition of DIGEST authentication.
HTTP Digest authentication uses a message digest in place of transferring
the user’s password.

http://www.sybex.com

Key Terms 261

Be able to identify the correct definition of FORM authentication.
HTTP Form-based authentication enables the application to provide its
own authentication and error page.

Be able to identify the correct definition of CLIENT-CERT authenti-
cation. HTTPS Client authentication requires the client to have a
private key and corresponding certificate in order to authenticate with
the server.

Key Terms

Before you take the exam, be certain you are familiar with the follow-
ing terms:

access list hackers

attackers keys

authentication malicious code

authorization nonce

certificate authority (CA) packet sniffers

client certificate principal

declarative security private key

digest programmatic security

digital certificate public key

digital signature role-based

firewalls

http://www.sybex.com

262 Chapter 7 � Secure Web Applications

Review Questions

1. Which of the following services would most likely utilize a retinal scan?

A. Auditing

B. Authentication

C. Access control

D. Data confidentiality

2. Which of the following best describes a principal?

A. Manager

B. 8yb3x

C. bjohnson

D. Employee

3. Which of the following is not an authentication technique used by a
web container?

A. BASIC

B. DIGEST

C. FORM

D. CLIENT-CERTIFY

4. A public key fails to ensure which of the following?

A. Confidentiality

B. Integrity

C. Authentication

D. All of the above

http://www.sybex.com

Review Questions 263

5. Given the following deployment descriptor tag, how will the browser
most likely reference the realm?

<login-config>

 <auth-method>

 BASIC

 </auth-method>

</login-config>

A. Default or unknown.

B. Null.

C. It will ignore the realm.

D. Realm.

6. Which of the following authentication types cannot be used for the
auth-method element?

A. BASIC

B. DIGEST

C. CERT

D. FORM

7. When using FORM authentication, your form writes to which of the
following URLs?

A. /servlet

B. j_security

C. j_security_source

D. j_security_check

http://www.sybex.com

264 Chapter 7 � Secure Web Applications

8. Which of the following values is used to define the name for a user
login while using FORM authentication?

A. j_username

B. j_userlogin

C. j_loginname

D. j_user

9. Which of the following HTTP methods must be used in FORM
authentication?

A. GET

B. POST

C. PUT

D. HEAD

10. Which of the following deployment descriptor tags are used to
identify the HTML page used when authentication fails in FORM
authentication?

A. <form-failed></form-failed>

B. <form-authentication-failure></form-authentication-
failure>

C. <form-error></form-error>

D. <form-error-page></form-error-page>

11. Which of the following deployment descriptor tags encompasses the
form-login-page and form-error-page tags?

A. <form></form>

B. <form-config></form-config>

C. <form-login-config></form-login-config>

D. <form-authenticate-config></form-authenticate-config>

http://www.sybex.com

Review Questions 265

12. Which of the following authentication types uses a private key?

A. BASIC

B. DIGEST

C. FORM

D. CLIENT-CERT

13. Which of the following statements is false?

A. A certificate can be bought from a third-party vendor.

B. Certificates contain client information and their public key.

C. CLIENT-CERT stands for HTTPS Client authentication.

D. Most browsers support CLIENT-CERT.

14. Which of the following key terms is used to define a random value
generated by the server for authentications purposes?

A. Nonce

B. Digest

C. Certificate

D. Digital signature

15. Which of the following devices is not a recommended place to store a
private key?

A. A public file

B. A database

C. A SmartCard

D. A secure file

http://www.sybex.com

266 Chapter 7 � Secure Web Applications

Answers to Review Questions

1. B. Authentication is a service that requests the principal user to
provide proof of their identity. A retinal scan is a very secure form of
evidence used in high-security companies and government agencies.

2. C. A principal is defined as a user. “bjohnson” represents a login
name recognized by the system. Usually the principal is associated
with a group such as Manager or Employee.

3. D. The last answer is incorrect. The fourth method for authentication
is CLIENT-CERT, which uses a Secure Socket Layer (SSL) to verify
the user.

4. C. A public key encrypts data to provide confidentiality. If it can be
decoded accurately, then integrity is ensured. Authentication, however,
is not proven by using public keys.

5. A. If a realm name is not provided, the browser will reference the
realm as default or unknown.

6. C. Client certificates are defined with the name
CLIENT-CERT.

7. D. The standardized name j_security_check must be defined as
the action for a login screen used in FORM authentication.

8. A. To ensure that the server retrieves the correct name when request-
ing the password, you must define its name as j_username when
using FORM authentication.

9. B. The form must POST a request to the server.

10. D. The form-error-page tag is used to define the error page for the
server to display when authentication fails.

11. C. The form-login-config tag contains the two sub-elements:
form-login-page and form-error-page.

12. D. Client certificates require the client to provide a key and certifi-
cate to prove their identity.

http://www.sybex.com

Answers to Review Questions 267

13. D. Unfortunately, HTTPS Client authentication, or CLIENT-CERT,
is the most secure form of authentication but the least supported.
Configuring HTTPS Client authentication is highly server-dependent.
Although many servers do not support HTTPS authentication, J2EE
servlet containers do.

14. A. A nonce is a random value generated by the server and sent to the
client to accompany a digest of the user’s username and password.

15. A. A public file is definitely not a recommended place to store a private
key. If others can access your private key, they can impersonate you
and cause a lot of havoc.

http://www.sybex.com

Chapter

8

Thread-Safe Servlets

THE FOLLOWING SUN CERTIFIED WEB
COMPONENT DEVELOPER FOR J2EE EXAM
OBJECTIVES COVERED IN THIS CHAPTER:

�

7.1 Identify which attribute scopes are thread-safe:

�

Local variables
�

Instance variables
�

Class variables
�

Request attributes
�

Session attributes
�

Context attributes

�

7.2 Identify correct statements about differences between the

multithreaded and single-threaded servlet models.

�

7.3 Identify the interface used to declare that a servlet must use

the single thread model.

http://www.sybex.com

T

hreads seem to be a topic that most developers wish to avoid
but can’t. In a single-threaded environment, ensuring the integrity of a Java
class is as easy as making all instance variables private and providing public
accessor or mutator methods. In a multithreaded environment, achieving a
“thread-safe” application is a bit more complex. Ensuring application integ-
rity is a difficult task when multiple users have the ability to access and alter
the same information simultaneously. When multiple clients concurrently
access a single object’s data, the application becomes vulnerable to several
negative conditions. Those conditions include: object state corruption (the
data produced is inaccurate), production of unreliable results (based on inac-
curate data), race conditions (more than one thread is competing for data
access before it might even exist), and, finally, deadlock (threads are left idle,
unable to move forward). To avoid such situations, it is critical for develop-
ers to consider the importance of an object’s state and how it is handled.

When developing for a multithreaded environment, threading issues cannot
be avoided. Servlets are intrinsically

multithreaded

. This means a single
instance can be accessed by more than one thread. Because servlets, by their
nature, are designed for multiple users, creating a thread-safe environment is a
vital key to the success of the application. In this chapter, we will discuss the
various ways to handle data and their related threading issues. We will also
address the significant differences between a single versus multithreaded model.

Attributes

S

ervlets offer a variety of options for storing data. The important
points to learn from this chapter are how various data elements are stored
and how they are affected by threads. Each variable or attribute provides a
different level of scope, which affects access by the user or users. Here is a list
of the data types we will discuss in depth in this section:

Local variables

Short-term values that are often used as loop iterators

http://www.sybex.com

Attributes

271

Instance variables

Data that persists for the life of the servlet, shared by
all concurrent users

Class variables

Data that exists for the life of the application, shared by
all concurrent users—including instances with different initialization
parameters

Request attributes

Data passed to other servlets invoked by
the

RequestDispatcher

Session attributes

Data that persists through all future requests for
the current user

Context attributes

Data shared by all servlets that persists for the life
of the application

In general, concern for thread-safety should be applied only to instance and
class variables. Here are the reasons why: All threads share the same heap,
and the heap is where instance variables are stored. When multiple threads are
accessing the same variable, there is potential for data corruption, because
more than one thread can access the same instance variable. Class variables
have a similar problem; they are stored within the same JVM method area. This
means multiple threads can use the same class variables concurrently. Because
all threads share the same heap and method area, there is a chance multiple
threads will access the same instance or class variable and corrupt its value.

Local variables, method parameters, and return values are quite different.
These variables reside on the Java stack. The JVM awards each thread its
own Java stack. Because each thread has its own set of local variables,
method parameters, and return values, there is no need to worry about mul-
tithreaded access. Table 8.1 identifies each variable discussed and indicates
whether it is architecturally designed to be thread-safe.

T A B L E 8 . 1

Which Variables Are Thread-safe

Variable Type Thread-safe

Class No

Instance No

Local Yes

Parameter Yes

Return Yes

http://www.sybex.com

272

Chapter 8 �

Thread-Safe Servlets

Now that you have a general understanding of how threads affect the dif-
ferent variables, we will discuss how to avoid problems with each variable type.

Local Variables

Local variables

 are defined within the body of a method. This limits the
variable’s scope to the life of the method—leaving little or no threading
issues to worry about. As each requesting thread accesses a servlet’s method,
a new local variable is assigned to each. Consequently, only one thread
accesses a servlet’s local data. Listing 8.1 provides a simple example of a
servlet using a local variable.

Listing 8.1: Using Local Variables

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class LocalVariableServlet extends HttpServlet {

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 int count=0;

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 count = (init) Math.round(Math.random());

 out.println("Count = " + count);

 }

}

Listing 8.1 creates a new

count

 variable for each thread accessing the

doGet(…)

 method. A random value is generated and rounded to the nearest
integer value. It is then assigned to the

count

 variable to finally print to the
response output stream. Figure 8.1 provides a visual representation of how
four threads accessing

LocalVariableServlet

 obtain their own

count

variable. By design, local variables are thread-safe.

http://www.sybex.com

Attributes

273

F I G U R E 8 . 1

Clients obtain their own local variable

Instance Variables

Instance variables

 are defined within the class body and are separately
assigned to each instantiated object. However, because servlets are often
instantiated by the container and service multiple requests, it is likely that
many threads will access the same servlet instance and its variables. This
behavior defies the basic threading rule, which states that more than one
thread should not access the same object. Breaking this rule can result in data
corruption if not handled correctly.

Understanding the servlet life cycle helps clarify

why

 instance variables
are susceptible to concurrency issues. A servlet is either initialized when the
web container first starts up or when the servlet is called for the first time.
Once created, the instance is stored for client access. Each client accessing the
servlet invokes the same instance. This means the client will view and modify
the same instance variables as the previous client. Listing 8.2 defines a

count

variable that is incremented when each thread makes a

GET

 request to the

InstanceVariableServlet

 class.

Listing 8.2: Using Instance Variables

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class InstanceVariableServlet extends HttpServlet{

 int count=0;}

Servlet
instance

doGet ()

int countClient thread 1

int countClient thread 2

int countClient thread 3

int countClient thread 4

http://www.sybex.com

274

Chapter 8 �

Thread-Safe Servlets

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 count++;

 out.println("Count = " + count);

 }

The problem with utilizing instance variables is that when two threads
invoke the same servlet, they can corrupt each other’s data. Thread A could
cause

count

 to increment to 1, but before it prints the

count

 value, thread
B could gain access to the instance and cause

count

 to increment to 2. After
control is returned to the first thread, the output will display 2 rather than
the correct value, 1.

Unlike local variables, instance variables are shared among all accessing
threads. See Figure 8.2.

F I G U R E 8 . 2

Clients share the instance

To protect against data corruption, shared data must be accessed by only
one thread at a time. Solving this problem requires utilizing the lock associ-
ated with the instance. By wrapping non-thread-safe code in a

synchronized

code block, you force the requesting thread to acquire the instance lock in
order to gain access to the code block. For example:

synchronized(this) {

 count++;

 out.println("Count = " + count);

}

Servlet
instance

Client thread 1

Client thread 2

Client thread 3 in
t c

ou
nt

Client thread 4

http://www.sybex.com

Attributes

275

After a thread obtains the object’s lock, it accesses the synchronized code
block and holds on to the lock until exiting the code block. Other threads
attempting to enter the same block are forced to wait until the lock is relin-
quished by the first thread—as seen in Figure 8.3.

F I G U R E 8 . 3

Accessing the instance in turns

By synchronizing the instance variable data, you protect against another
thread corrupting shared data. However, from a stylistic point of view, there
are a few more concepts to consider. Synchronizing code can cause:

�

Reduction in performance

�

Deadlock

�

Increased resource utilization

Blocking other threads comes with a price. While a thread waits for a lock,
it is inactive and not productive. The result is a reduction in performance.

Another consideration is the potential for deadlock. Sometimes locking
too much information can prevent the application from moving forward.
Consider a scenario with two threads: The first thread gains access to a
synchronized block and attempts to accomplish a task. A second thread
attempts to enter the same code block but is forced to wait because it lacks
the lock. The first thread, however, encounters a problem. It is unable to exe-
cute code because it is waiting on results from the second thread—and the
second thread can’t provide any results because it is waiting for the lock to
be relinquished. Ultimately, both threads are at a standstill. To minimize the
possibility of deadlock, you should synchronize only that code absolutely
requiring protection. In the preceding example, there is really no need to
include the

println(…)

 statement in the block; only code that modifies the

count

 variable needs to be synchronized. Although this example was not at
risk of causing a code freeze, pulling the

println(…)

 statement out of the
synchronized block increases the application’s efficiency rate.

ZZzzz

ZZzzz

ZZzzz

Servlet
instance

Client thread 1

Client thread 2

Client thread 3

int count

Client thread 4

http://www.sybex.com

276

Chapter 8 �

Thread-Safe Servlets

The final issue concerning locks is the overhead required to transfer the
lock between object and thread. Again, utilizing resources to swap objects
between threads can slow down the application or server.

Listing 8.3 shows how to prevent data corruption and keep perfor-
mance high.

Listing 8.3: Using the Instance Variable Safely

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class InstanceVariableServlet extends HttpServlet{

 int count=0;

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

synchronized(this) {

 count++;

}

 out.println("Count = " + count);

 }

}

This solution works best if there is a need to protect shared data. Another
option is to make the variable

immutable

. This means the variable is final
and cannot change. Without the ability for change, there is no chance of
corrupting the value. Of course, this option wouldn’t work in this scenario,
but it is another consideration.

In summary, instance variables are not considered thread-safe and should
be avoided if possible. If utilizing an instance variable is unavoidable, then
sensitive code should be carefully synchronized to prevent multiple threads
from distorting the data.

http://www.sybex.com

Attributes

277

Class Variables

Class variables

, or static variables, are shared among all instances of a serv-
let. It is a misconception to think a server will create only one instance of
a particular servlet. The truth is, the server can create a new instance of the
same servlet for each registered name defined. Within the

web.xml

 file, a
single servlet can be registered under multiple names. The following code
demonstrates how this is done:

<web-app>

 <servlet>

 <servlet-name> First </servlet-name>

 <servlet-class> ClassVariableServlet </servlet-class>

 </servlet>

 <servlet>

 <servlet-name> Second </servlet-name>

 <servlet-class> ClassVariableServlet </servlet-class>

 </servlet>

 <servlet>

 <servlet-name> Third </servlet-name>

 <servlet-class> ClassVariableServlet </servlet-class>

 </servlet>

</web-app>

Notice the

ClassVariableServlet

 can be referenced by the name

First

,

Second

, or

Third

. The server can, in fact, create an instance for each
referenced name if necessary. Consequently, any class or static variable
defined in the

ClassVariableServlet is shared among all instances. List-
ing 8.4 demonstrates how the servlet monitors the number of instances and
how its variables are affected.

Listing 8.4: Using Class Variables

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

import java.io.*;

http://www.sybex.com

278 Chapter 8 � Thread-Safe Servlets

public class ClassVariableServlet extends HttpServlet{

 int count;

 static HashMap instances = new HashMap();

 static int classCount;

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 count++;

 out.println("Since loading, the “ +

 req.getServletPath() +

 “ instance has been accessed " +

 count + " times.");

 instances.put(this, this);

 out.println("There are currently " +

 instances.size() + " instances.");

 classCount++;

 out.println("Across all instances, the " +

 "ClassVariableServlet class has been " +

 "accessed " + classCount + "times.");

 }

}

This code is made up of three important parts. The first is an instance vari-
able that is monitored and incremented by each reference or instance. The
second part is a java.util.HashMap used to count the number of instances
maintained by the server. Each reference is added by using the put(…) method,
and duplicates are ignored. The final important piece is the class variable called
classCount. It measures the number of times the ClassVariableServlet
is accessed among all instances.

The output generated from this servlet will differ with each request, and
as each instance is created and accessed. The first time this servlet is run, it

http://www.sybex.com

Attributes 279

will have been accessed once with only one instance created. However, if the
servlet is reloaded, the result shown in Figure 8.4 will occur.

F I G U R E 8 . 4 A single instance

When the browser reloads the servlet, the doGet(…) method is accessed
again, causing both instance and class variables to increment. Notice that a
reload does not cause a new instance to be created. You can expect the same
behavior if another thread accesses the /servlet/First servlet.

Now let’s consider a different scenario. If a new thread attempts to access
the same servlet but uses the reference /servlet/Second, the output shown
in Figure 8.5 will result.

F I G U R E 8 . 5 A second instance

The server creates a new instance of the ClassVariableServlet and its
instance variable is accessed only once. The variable classCount, however,
is accessed for a third time: first when /servlet/First was accessed, then
on its reload, and now by /servlet/Second.

http://www.sybex.com

280 Chapter 8 � Thread-Safe Servlets

Our final image drives home the difference between an instance versus
class variable. Figure 8.6 shows how a third thread accessing /servlet
/Third causes the values to change.

F I G U R E 8 . 6 The third instance

Once again, a new instance is created. While the instance variable is
accessed for the first time, the class variable has now been incremented
four times.

For each registered name, a servlet can have unique init parameters.
Consequently, multiple instances of the same servlet can have different
initialization attributes.

Now that we have established how class variables work, we can focus
on how the class and instance variables behave when accessed by multiple
threads. Basically, class or static variables are shared among all instances
of the servlet, which makes them vulnerable to threading issues. In a multi-
threaded application, static and instance variables behave quite similarly.
Both allow multiple users to access the data simultaneously. If a method
alters either variable type and is accessed by one thread, a second thread
could call that same or a different method, altering the variable simulta-
neously. The end result is a corrupt value.

The solution to class variable threading issues is the same as the one used
for instance variables: simply synchronize critical data or make the variables
immutable. These actions can protect against problems generated from mul-
tiple access.

http://www.sybex.com

Attributes 281

Request Attributes

When a servlet attempts to use another servlet to process part or all of a
response, a RequestDispatcher is used. The originating servlet sends both
the request and response to the target servlet for further execution. However,
prior to transmission, objects can be associated with the request. These objects
are called request attributes. The setAttribute(String name, Object obj)
method of the ServletRequest interface allows additional information to be
associated with the request object. Once the request object contains all its nec-
essary information, one of the following methods of the RequestDispatcher
interface is invoked to transfer part or all of the control to the target servlet:

The forward(...) method The forward(HttpServletRequest req,
HttpServletResponse resp) method causes the servlet engine to
“forward” control of the HTTP request internally from your current
servlet to another servlet or JSP or static file. The target resource is respon-
sible for generating or delivering the response.

The include(...) method The include(HttpServletRequest req,
HttpServletResponse resp) method means you include the result of
another resource, such as a servlet, JSP, or HTML page, inside the
response. The calling servlet then regains control of the response for
further modifications.

For a detailed discussion on the RequestDispatcher, refer to Chapter 2, “The
Servlet Model.”

Manually handling servlet-to-servlet communication would be a
difficult task to manage, especially in a multithreaded environment. The
RequestDispatcher object is designed to streamline the process and
ensure that concurrency problems do not occur. Listing 8.5 shows a basic
servlet dispatching a request to another servlet called TargetServlet.

Listing 8.5: A Simple RequestDispatcher Servlet

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

import javax.swing.*;

http://www.sybex.com

282 Chapter 8 � Thread-Safe Servlets

public class CallingServlet extends HttpServlet {

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 ImageIcon icon =

 (ImageIcon)req.getParameter(“icon”);

 req.setAttribute(“logo”, icon);

 String display = “/servlet/TargetServlet”;

 RequestDispatcher dispatcher =

 req.getRequestDispatcher(display);

 dispatcher.forward(req, res);

 }

}

In this example, the calling thread begins by requesting an icon defined
within the web.xml file. Remember, the return value can actually differ
depending on the reference name mapped to this servlet instance. After
the icon is obtained, it is associated with the request object by using the
setAttribute(…) method. The path for the target servlet is then defined
and must be relative to the servlet context for the application. A
RequestDispatcher to the TargetServlet is acquired. Finally, both
request and response objects are forwarded to the target source.

To dispatch a request to a resource outside the current servlet context, you
must use the ServletContext.getRequestDispatcher(String path) method.

Control is returned to the calling thread when using the forward(…) or
include(…) method; however, with the forward(…) method, no further
modifications to the response can be made.

With a basic understanding of how the RequestDispatcher transfers
control to another servlet, the fundamental question of whether its request
attributes are thread-safe must be answered. Amidst the chaos of request dis-
patching, the request attributes are actually thread-safe. The imagery of
control transferring between multiple servlets, while multiple threads are
accessing the original caller, might seem confusing; however, some funda-
mental rules prevent problems from occurring in this environment.

http://www.sybex.com

Attributes 283

The logic rests on two critical points:

� Dispatched requests must run in the same:

� Servlet engine

� JVM

� Thread

� Dispatcher parameter values are not shared among threads within a
single JVM.

The container creates the RequestDispatcher object to wrap around the
target servlet (or another server resource). This dispatcher must run within
the same servlet engine, JVM, and thread as the target servlet. Conse-
quently, the RequestDispatcher oversees and manages the transfer of control.

When dispatched, a single thread moves between the source and the target
servlet. Because the attributes are linked to the request object, a second
thread accessing the dispatcher code will be assigned its own thread and
cannot affect the attributes of first dispatched thread.

The second point builds on the first: request parameters are not shared.
Each request dispatch causes the calling thread to separately store its set of
request attributes on the heap. Consequently, if one thread modifies its
attributes, it will not affect other dispatch threads.

Ultimately, the RequestDispatcher ensures that the integrity of the data
will not be compromised. Figure 8.7 demonstrates the process.

F I G U R E 8 . 7 Thread-safe request parameters

The RequestDispatcher acts like a traffic manager in a multithreaded
world. It routes traffic from point A to point B while making sure no colli-
sions occur. Without the dispatcher, it would be difficult to avoid concur-
rency problems as parameters are passed between servlets. Because request
attributes are designed for utilization with the RequestDispatcher, you can
be assured they are thread-safe.

Servlet A Servlet B
req, res

req, res

RequestDispatcher

http://www.sybex.com

284 Chapter 8 � Thread-Safe Servlets

Session Attributes

When a user accesses an application, their short-term data can be tracked by
using a session object. The object is comprised of temporary client informa-
tion referred to as session attributes. A session begins when the developer cre-
ates an HttpSession object for the client. That can happen when the client
visits the first or subsequent pages of the application. The session ends either
when the developer terminates their access, or after an elapsed time period.
Because a session is created by the container and associated with each client
through its request object, threading is handled internally and is quite safe.

A servlet uses the HttpServletRequest method getSession() to retrieve
the current session. That value should be stored in a local variable to avoid
concurrency issues. After the session object is obtained, the servlet uses the
setAttribute(String name, Object obj) method of the HttpSession
interface to store client information, and the getAttribute(String name)
method to retrieve data. Listing 8.6 shows how a servlet sets client attributes
to the session.

Listing 8.6: Using Session Attributes

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class SessionServlet extends HttpServlet {

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 HttpSession session = req.getSession();

 session.setAttribute("userName",

 req.getRemoteUser());

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 out.println("Welcome " +

 session.getAttribute("userName"));

 }

}

http://www.sybex.com

Attributes 285

The session is retrieved dynamically from the current request object.
Because of Java’s design, you are guaranteed that the request parameter is
directly threaded to the current client. As a result, the session returned is also
the session associated with the client accessing this code. Any attributes
added or acquired fall under the same category and are thread-safe. Once the
variable is local to a method, there is no threat of data corruption from inter-
cepting threads due to local variable threading rules. Figure 8.8 provides a
visual representation of how session objects and their attributes are linked
directly to the client thread.

F I G U R E 8 . 8 Sessions linked to the client

Fundamentally, each client operates on its own session object. By design,
adding session attributes is thread-safe.

Context Attributes

As discussed in Chapter 2, the ServletContext is an object that provides
global data to an entire application. This global data is referred to as con-
text attributes. If a servlet needs to acquire the port number used to access
the main database, it would invoke the getServletContext() method
to first get a handle to the application’s context. It then would call the
getAttribute(String name) method, using the key name, to return
the desired port number. Attributes are most commonly defined within the
deployment descriptor, as shown in the following code snippet:

<web-app>

 <context-param>

 <param-name>

 driver

Servlet
instance

Session AClient thread 1

Session BClient thread 2

Session CClient thread 3

Session DClient thread 4

http://www.sybex.com

286 Chapter 8 � Thread-Safe Servlets

 </param-name>

 <param-value>

 oracle.jdbc.driver.OracleDriver

 </param-value>

 <param-name>

 databaseProtocol

 </param-name>

 <param-value>

 jdbc:oracle://dbServer1:1521

 </param-value>

 </context-param>

 …

</web-app>

Defined before other resources, the context parameters are shared by
all servlets and JSPs within the web application. Generally, servlets use the
ServletContext’s getAttribute(…) method to read context data, and
rarely use the setAttribute(…) method to define the values. Listing 8.7
displays a basic servlet using the ServletContext to retrieve a context
attribute for the database driver needed to establish a database connection.

Listing 8.7: Using Context Attributes

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

import java.sql.*;

public class ContextServlet extends HttpServlet {

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

http://www.sybex.com

Single-Threaded Servlets 287

 ServletContext context = getServletContext();

 String driver =

 (String)context.getAttribute(“driver”);

 try {

 Class.forName(driver);

 Connection con = DriverManager.getConnection(

 context.getAttribute(“databaseProtocol”) +

 “CustomerListDB”);

 …

 } catch (ClassNotFoundException e) {

 out.println(“Unable to load driver”);

 } catch (SQLException e) {

 out.println(e.getMessage());

 }

 }

}

This code demonstrates the use of context attributes in a simple way.
How threads are handled is another story. Because all application resources
have access to the data within a context, a modification made by one thread
will affect all other threads. If thread A calls setAttribute(…) and changes
the value of the driver attribute, thread B will access the new driver when
getAttribute(“driver”) is called. This does not mean that context
attributes are not thread-safe, because the behavior is expected and normal.
Problems arise if during the implementation of the setAttribute(…) method,
another thread calls setAttribute(…) on the same name. If the method
setAttribute(…) is not synchronized, there is potential for concurrency
problems. Most server applications offer this feature; however, it is not man-
dated, nor is it guaranteed.

So in summary, we can say context attributes are fairly thread-safe,
because they are usually set in the web.xml file and most servers do synchro-
nize the setAttribute(…) method.

Single-Threaded Servlets

One solution to preventing threading problems within servlets is to
limit the number of threads that can access a single servlet to one. This can be

http://www.sybex.com

288 Chapter 8 � Thread-Safe Servlets

done by having the servlet implement the SingleThreadModel interface. There
are no methods that must be implemented. Instead, the interface is used as a
flag to notify the container how to handle the servlet life cycle. As per the API
specifications, a servlet that implements the SingleThreadModel is “guaran-
teed” to allow only one thread access to the service() method at a time. This
guarantee is achieved by the container either synchronizing access to the single
servlet instance or maintaining a pool of servlet instances. The latter approach
is more common. Containers can be configured to create multiple servlet
instances per a single registered name. Figure 8.9 shows this graphically.

F I G U R E 8 . 9 How the SingleThreadModel affects instances

As a request comes in, the container provides an available instance from
the pool. When resources run out, the container can either make the current
thread wait or produce another instance. The benefit of this model is that
each thread has access to its own instance variables for the servlet. This
means instance variables are now thread-safe without the need to synchro-
nize. One problem solved.

Unfortunately, threading issues extend beyond instance variables. Class
variables are not protected by the SingleThreadModel interface. Because
class variables are shared among all instances, including those registered by
the same name, a method that changes their value can cause data corrup-
tion. Imagine the following scenario. Thread A begins by using its personal
instance to access the doGet(…) method. The doGet(…) method makes a

Servlet
instance

Servlet
instance Registered name

Standard servlet

Servlet
instance

Servlet
instance

Servlet
instance

Servlet
instance

Registered name

SingleThreadModel servlet

http://www.sybex.com

Single versus Multithreaded Servlets 289

change to a class variable. If thread B comes into the picture, it also uses its
own instance to call the same doGet(…) method. Both threads could mod-
ify the class variable and cause the other to work using an inaccurate value.
Figure 8.10 clarifies the process.

F I G U R E 8 . 1 0 Class variables with the SingleThreadModel

The image shows three instances accessing the same class variable. Imple-
menting the SingleThreadModel interface fails to solve threading problems
with class variables. The solution? Synchronization.

Although the SingleThreadModel seems to be the fast and easy solution,
it is not encouraged practice. The interface manages to make a single servlet
thread-safe, but fails to apply that to the entire system. A positive and a neg-
ative still result in a negative. The encouraged alternatives are to synchronize
methods or use external resource pools.

Single versus Multithreaded Servlets

When one thread accesses a Java class, there is little concern for
corruption. Servlets, however, are different. By design, even single-threaded
servlets can provide room for data errors. Generally, a container will create
an instance of the servlet by calling its constructor and init() method. The
servlet will then persist until additional requests are made. With the imple-
mentation of the SingleThreadModel interface, each request will either
wait in turn to access the instance’s service(…) method or get its own
unique instance of the registered servlet. Instance variables are protected, but
shared resources are still not thread-safe.

Servlet
instanceClient thread

Servlet
instanceClient thread

Servlet
instanceClient thread

doGet(…) {
 classVariable++;
 out.println(classVariable);
}

http://www.sybex.com

290 Chapter 8 � Thread-Safe Servlets

Multithreaded servlets must use synchronized blocks to protect data that
can be concurrently accessed. In summary, Table 8.2 identifies the differ-
ences between single-threaded and multithreaded servlets.

T A B L E 8 . 2 Thread-safe?

Data Element

Normally

Thread-safe? Synchronized SingleThreadModel

Local variables Yes N/A N/A

Instance variables No Yes Yes

Class variables No Yes No

Request attributes Yes Yes Yes

Session attributes Yes Yes Yes

Context attributes Depends Yes Depends

Ways to Handle Multiple Threads

A local university has hired you to help design their website used to run
courses online. Each course is designed to have a maximum of 100 students
enrolled at a time. Although the majority of each class will consist of static
pages containing information, the application must also provide testing,
discussion, and homework areas. These areas will be designed by using
servlets and will also be accessible to all students.

The problem is that multiple students can access a servlet, for example, the
TestServlet, and corrupt other students’ access. To avoid creating a mess,
there are two solutions. The first is to have the servlet implement the
SingleThreadModel interface. Given the server used, this option will cause
the container to create a pool of instances. This approach ensures that each
student uses their own servlet instance, with its own instance variables to
process the exam. The second option is to process the servlet in its normal

http://www.sybex.com

Exam Essentials 291

Summary

In this chapter, we discussed the various threading issues associated
with a variety of data elements. When multiple threads access a servlet, its
instance and class variables are vulnerable to corruption. Local variable
and method parameters are safe due to the design of the JVM. To protect
data against possible corruption, synchronized code blocks can be placed
around calls to modify the data. By forcing threads to obtain the object’s
lock for access, you prevent multiple threads from simultaneously altering
critical data.

Another solution to threading issues is to have the servlet implement the
SingleThreadModel interface. As discussed in this chapter, this can solve some
of the problems, but can still leave you with the need to synchronize shared
data. The other option is to make variables immutable. It’s one solution, but
not practical.

In conclusion, the following suggestions can be made: In place of instance
variables, session attributes provide a safer way to handle data in a multi-
threaded environment. If applicable, context attributes provide more thread
safety than class variables.

Exam Essentials

Be able to identify which of the following attributes are thread-safe: local
variables, instance variables, class variables, request attributes, session
attributes, and context attributes. It is important to know how each
variable and attribute is affected by multiple client access. Instance and
class variables are especially prone to concurrency issues. Local variables
and session/request attributes are thread-safe. Context attributes can be
corrupted, but their design makes that unlikely.

state and define the students’ answers as session attributes. The downside
of this approach is that if the student leaves their system for an extended
period of time, the session will time out—and they will need to start over.
There are many ways to solve a problem. Depending on the server’s capa-
bilities and performance issues, one approach will outweigh another.

http://www.sybex.com

292 Chapter 8 � Thread-Safe Servlets

Be able to identify correct statements about the differences between
multithreaded and single-threaded servlet models. The multithreaded
model allows more than one client request to access a single instance. If
variables are synchronized, concurrency problems can be avoided. The
single-threaded model is designed to have only one request access an
instance at a time. Although this seems to solve all threading problems, it
doesn’t. Synchronization is still necessary on certain variables or attributes.

Be able to identify the interface used to declare that a servlet must use the
single-thread model. The SingleThreadModel interface guarantees a
request will access its own servlet instance. Although this option offers
some thread safety, it does not protect the entire application from thread-
ing issues.

Key Terms

Before you take the exam, be certain you are familiar with the follow-
ing terms:

class variables multithreaded

context attributes request attributes

immutable session attributes

instance variables SingleThreadModel

local variables synchronized

http://www.sybex.com

Review Questions 293

Review Questions

1. Which of the following code samples defines a class variable? (Choose
all that apply.)

A. public class MyServlet extends HttpServlet {
 public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException {
 int count=0;
 …
 }
}

B. public class MyServlet extends HttpServlet {
 static int count = 0;
 public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException {
 …
 }
}

C. public class MyServlet extends HttpServlet {
 int count;
 public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException {
 …
 }
}

D. None of the above

2. Which of the following data elements are considered thread-safe?

A. Local variables

B. Static variables

C. Class variables

D. Instance variables

http://www.sybex.com

294 Chapter 8 � Thread-Safe Servlets

3. Which of the following statements best describes how to protect
against data corruption?

A. Synchronizing only shared data

B. Synchronizing all servlet methods

C. Synchronizing the doGet() or service() method

D. Making all instance and class variables immutable

4. Identify the data element used to transfer control with a
RequestDispatcher.

A. Instance variable

B. Request attribute

C. Session attribute

D. Dispatcher attribute

5. Request attributes are associated with which of the following?

A. The request object

B. The RequestDispatcher

C. All instances of the servlet

D. The current servlet

6. Which of the following cannot be created from multithreaded access?

A. Corrupt data

B. Synchronized blocks

C. Deadlock

D. Unreliable return values

7. Which of the following statements is true?

A. To access a synchronized block, a thread must obtain the object’s lock.

B. After a synchronized block is accessed, other threads can access the
code if they have a higher priority.

C. You can synchronize an entire method or just its parameters.

D. An object’s lock is relinquished after the method is complete.

http://www.sybex.com

Review Questions 295

8. Under most circumstances, which of the following data types exists
for the life of the current user?

A. Local variables

B. Class variables

C. Session attributes

D. Request attributes

9. What methods must be defined when the SingleThreadModel inter-
face is implemented?

A. public void run()

B. public void synchronize(Object lock)

C. public void block()

D. None of the above

10. Which of the following items are located on the Java stack? (Choose
all that apply.)

A. Instance variables

B. Local variables

C. Method parameters

D. Class variables

11. Poor use of synchronization can result in which of the following prob-
lems? (Choose all that apply.)

A. Reduction in performance

B. Thread termination

C. Deadlock

D. Increased resource utilization

http://www.sybex.com

296 Chapter 8 � Thread-Safe Servlets

12. Which of the following statements is true?

A. A container can create only one instance per servlet class.

B. A requesting thread receives a handle to a servlet instance from the
container.

C. A container will create only one instance per a servlet’s registered
name, under all circumstances.

D. A container is likely to create a pool of instances of a particular
servlet if it does not implement the SingleThreadModel interface.

13. Which of the following statements is most likely false? (Choose all that
apply.)

A. A separate RequestDispatcher is associated with each request
object.

B. Request attributes are indirectly linked to the
RequestDispatcher object.

C. A RequestDispatcher manages threading issues associated with
the request attributes of each request object.

D. The RequestDispatcher is a wrapper for the target servlet.

14. Which of the following statements are false? (Choose all that apply.)

A. Context attributes are shared by all threads.

B. Attributes can be set within the deployment descriptor.

C. Attributes cannot be set by using a setAttribute(String name,
Object obj) method.

D. There is never a need to synchronize when making modifications
to context attributes.

15. The API specification makes which of the following guarantees when
a servlet implements the SingleThreadModel?

A. It guarantees that no two threads will access the same request method.

B. It guarantees that no two threads will access the same service(…)
method.

C. It guarantees that no two threads will access the same instance.

D. It guarantees that no two threads will access the same variables.

http://www.sybex.com

Answers to Review Questions 297

Answers to Review Questions

1. B. Class variables are defined by using the static keyword and are
located under the class definition.

2. A. Local variables are placed on the stack. Because each thread is
provided its own stack, there is no chance for another thread to access
this value.

3. A. Synchronizing large blocks of code should be avoided to protect
against performance hits. Consequently, only shared data should be
locked. As for making all instance and class variables immutable, well,
that isn’t always a feasible option.

4. B. The RequestDispatcher manages requests that are sent to other
server resources. Each request can be comprised of additional objects
defined as request attributes.

5. A. Request attributes are linked to the request object and managed
by the RequestDispatcher. The dispatcher, on the other hand, is
linked to the servlet context.

6. B. Synchronized blocks are created by developers to prevent thread-
ing issues. The other options can result from multiple threads accessing
the same servlet.

7. A. A thread must obtain the object’s lock to read synchronized code
blocks. After the lock is held by one thread, all others must wait until
the lock is relinquished—this occurs when the original thread exits the
synchronized code block. Finally, you cannot synchronize parameters.

8. C. A session object is created when a client first accesses a web site.
During the life of the session, data is added and will continue to persist
for the life of the current user or if the session times out.

9. D. The SingleThreadModel interface is a flag interface with no
methods. It is used by the container to determine the type of life cycle
for the servlet.

10. B, C. Both local variables and method parameters are stored on the
Java stack. Each request is provided its own stack to prevent threading
problems. Instance variables are stored in the heap, which is shared by
all threads. Finally, class variables are stored in the method area, mak-
ing them accessible by all threads as well.

http://www.sybex.com

298 Chapter 8 � Thread-Safe Servlets

11. A, C, D. If code is not synchronized correctly, negative effects can
result. Performance can decline, resource utilization can increase, and
threads can freeze. Threads, however, will not terminate.

12. B. The first option is incorrect because a container usually creates
one instance per registered name. The third option is inaccurate
because a container can create more than one instance per registered
name if the servlet implements the SingleThreadModel. Finally,
pooling is, in fact, an option when the SingleThreadModel interface
is implemented. This leaves the second option. When a request is sent
to the container, it is up to the container to provide a servlet instance to
the requesting thread.

13. A. The RequestDispatcher object can be obtained in two ways.
One way is through the Request object, and the other is through the
ServletContext object. Consequently it is not tightly coupled with
the request object.

14. C, D. There is a setAttribute(String name, Object obj)
method within the ServletContext class. Although it isn’t used
much, it is still available. Because context attributes are shared by all
threads, modifications to their values can require synchronization if
the setAttribute method is not synchronized.

15. B. The API states

“If a servlet implements this interface, you are guaranteed
that no two threads will execute concurrently in the servlet’s
service.”

Basically, the server can either synchronize the service(…) method
for that one instance, or it can create a pool of instances and allocate
a handle when a request is made. Although the third option is a
possibility, it is not guaranteed.

http://www.sybex.com

Chapter

9

Java Server Pages (JSPs)

THE FOLLOWING SUN CERTIFIED WEB
COMPONENT DEVELOPER FOR J2EE EXAM
OBJECTIVES COVERED IN THIS CHAPTER:

�

8.1 Write the opening and closing tags for the following JSP tag

types:

�

Directive
�

Declaration
�

Scriptlet
�

Expression

�

8.2 Given a type of JSP tag, identify correct statements about

its purpose or use.

�

8.3 Given a JSP tag type, identify the equivalent XML-based tags.

�

8.4 Identify the

page

 directive attribute, and its values, that:

�

Import a Java class into the JSP page
�

Declare that a JSP page exists within a session
�

Declare that a JSP page uses an error page
�

Declare that a JSP page is an error page

�

8.5 Identify and put in sequence the following elements of the

JSP page life cycle:

�

Page translation
�

JSP page compilation
�

Load class
�

Create instance
�

Call

jspInit

�

Call

_jspService

�

Call

jspDestroy

�

8.6 Match correct descriptions about purpose, function, or use

with any of the following implicit objects:

�

request

http://www.sybex.com

�

response

�

out

�

session

�

config

�

application

�

page

�

pageContext

�

exception

�

8.7 Distinguish correct and incorrect scriptlet code for:

�

A conditional statement
�

An iteration statement

�

9.1 Given a description of required functionality, identify

the JSP page directive or standard tag in the correct

format with the correct attributes required to specify the

inclusion of a web component into the JSP page.

�

10.1 For any of the following tag functions, match the

correctly constructed tag, with attributes and values as

appropriate, with the corresponding description of the

tag’s functionality:

�

Declare the use of a JavaBean component within
the page.

�

Specify,

for

jsp:useBean

 or

jsp:getProperty

 tags,
the name of an attribute.

�

Specify, for a

jsp:useBean

 tag, the class of the attribute.
�

Specify, for a

jsp:useBean

 tag, the scope of the attribute.
�

Access or mutate a property from a declared JavaBean.
�

Specify, for a

jsp:getProperty

 tag, the property of the
attribute.

�

Specify, for a

jsp:setProperty

 tag, the property of the
attribute to mutate, and the new value.

�

10.2 Given JSP page attribute scopes:

request

,

session

,

application

, identify the equivalent servlet code.

� 10.3 Identify techniques that access a declared JavaBean

component.

http://www.sybex.com

One of the goals of the J2EE model is to have each task or
role handled separately. By eliminating dependencies, each component
becomes reusable, extensible, and manageable. This same philosophy carries
over to the Java Server Page (JSP) model. Generally speaking, the Internet’s
history began with a scripting language called Common Gateway Interface,
more commonly known as CGI. CGI provided client-server communication
but failed to efficiently handle security, multithreading issues, extensibility,
logging capabilities and other enterprise-related features. This opened the
door to servlet technology. Servlets replaced CGI by using Java technology
to communicate between the client and application. A servlet intercepts a
browser request and executes it on the server by mixing dynamic content
with static content generated by HTML. Although servlets provide a Java
solution to communication, they still closely link Java and HTML code.
JSPs, on the other hand, provide a solution to this level of dependency.
As per the JSP specification, JSPs “enable the separation of dynamic and
static content.” Because JSPs are built on top of servlets, they focus on the
presentation while the servlet focuses on the content. In this chapter, we
will discuss the design behind this technology and how to implement
it correctly.

The JSP Model

To be a first-rate servlet developer, you must be a strong Java pro-
grammer. In addition, you should also have decent HTML and design skills
to generate elegant graphical responses. In an ideal world, people could
accomplish both tasks with proficiency. In a realistic world, however,

http://www.sybex.com

302 Chapter 9 � Java Server Pages (JSPs)

those who develop the front end, or Presentation layer, are strong in graph-
ical design and are in a separate group from business logic programmers
who develop the middle or back end of an application. This fact makes
superior servlet development difficult. The solution to this predicament is
to add another technology to servlets to help share the task. This design
is known as the JSP model. Unlike servlet developers, a good JSP developer
simply needs to be strong in design and front-end development. The need
to know Java can be left to the servlet programmer. By separating the
design developer from the Java developer, you enable a single individual to
master the Presentation layer while another masters the middle, or Business
Logic, layer.

The JSP model relies on two main objectives. The first is to allow and
encourage the separation of the Presentation layer from Java code. The
second objective is to enable developers to author web pages that have
dynamic content, with maximum power and flexibility. By mere design,
the second objective is met. As for the first, well, it is still possible to
include Java code inside JSP files. The “separation” is encouraged and pos-
sible, but not mandatory. Figure 9.1 illustrates how the priorities of each
technology differ.

F I G U R E 9 . 1 Servlet design versus JSP design

A servlet is Java code with HTML embedded within, whereas a JSP is
HTML code with embedded Java. Creating an inverse model enables each
developer to focus on their own area of expertise. Let’s compare the code
necessary to generate a “Hello World!” greeting by using a servlet versus
a JSP; see Figure 9.2.

Figure 9.2 proves a developer needs to fully understand Java to write a
servlet, whereas a JSP developer’s strength is in HTML. Both files generate
the same output; “Hello World!” will appear in the top-left corner of the
browser. To ensure this result, all JSP pages must be saved by using the .jsp
extension. In addition, the file (that is, hello.jsp) must be placed in either
the server’s document root or the application’s context path.

Servlet JSP

HTML

Java

Java

HTML

http://www.sybex.com

The JSP Model 303

F I G U R E 9 . 2 Servlet code versus JSP code

The naming standard for JSP pages suggests that all filenames should be
identified with an initial lowercase letter.

Most vendors who support servlets also provide JSP support. The refer-
ence implementation for JSPs is called Jasper. It is embedded within the
Tomcat server. Next, we will discuss how JSPs work.

JSP Life Cycle

The first time a client makes a request, the JSP engine captures the request
and loads the appropriate .jsp page. It then creates a special servlet from
the Java Server Page to execute the page’s content. Listing 9.1 shows the
wrapper class source code generated by an Apache server to execute the
hello.jsp page. (The actual code may very among servers.)

Listing 9.1: JSP to Servlet Code for hello.jsp

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class HelloServlet extends HttpServlet {
 public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException {

 res.setContentType(“text/html”);

 PrintWriter out = res.getWriter()
 out.println(“<HTML>”);
 out.println(“<BODY>”);
 out.println("Hello World!");
 outprintln(“</BODY>”);
 outprintln(“</HTML>”);
 }
}

HelloServlet.java

<HTML>
 <BODY>
 Hello World!
 </BODY>
</HTML>

hello.jsp

http://www.sybex.com

304 Chapter 9 � Java Server Pages (JSPs)

import org.apache.jasper.runtime.*;

public class hello$jsp extends HttpJspBase {

 static {}

 public hello$jsp() {}

 private static boolean _jspx_inited = false;

 public final void _jspx_init()

 throws org.apache.jasper.runtime.JspException {}

 public void _jspService(HttpServletRequest request,

 HttpServletResponse response)

 throws java.io.IOException, ServletException {

 JspFactory _jspxFactory = null;

 PageContext pageContext = null;

 HttpSession session = null;

 ServletContext application = null;

 ServletConfig config = null;

 JspWriter out = null;

 Object page = this;

 String _value = null;

 try {

 if (_jspx_inited == false) {

 synchronized (this) {

 if (_jspx_inited == false) {

 _jspx_init();

 _jspx_inited = true;

 }

 }

 }

 _jspxFactory = JspFactory.getDefaultFactory();

 response.setContentType(

 "text/html;charset=ISO-8859-1");

http://www.sybex.com

The JSP Model 305

 pageContext =

 jspxFactory.getPageContext(

 this, request, response,"", true, 8192, true);

 application = pageContext.getServletContext();

 config = pageContext.getServletConfig();

 session = pageContext.getSession();

 out = pageContext.getOut();

 // HTML // begin

[file="/jsp/checkbox/checkresult.jsp"from=(0,0);to=(7,0)]

 out.write("<html>\r\n<body>\r\n

 Hello World!\r\n</body>\r\n</html>\r\n");

 // end

 } catch (Throwable t) {

 if (out != null && out.getBufferSize() != 0)

 out.clearBuffer();

 if (pageContext != null)

 pageContext.handlePageException(t);

 } finally {

 if (_jspxFactory != null)

 _jspxFactory.releasePageContext(pageContext);

 }

 }

}

As you can see, the JSP engine dynamically generates all the necessary servlet
logic to provide functionality for the Presentation layer. The “Hello World!”
string is written to the output stream defined within the service method.

Later, when we discuss implicit objects (bold objects within the code), you
might want to refer back to this example to see exactly where and how these
variables are defined.

A fundamental servlet rule is that all servlets must implement the javax
.servlet.Servlet interface. Standard servlets extend javax.servlet.http
.HttpServlet, which indirectly inherits from the javax.servlet.Servlet
interface. A servlet converted from a JSP must follow the same directive. The

http://www.sybex.com

306 Chapter 9 � Java Server Pages (JSPs)

difference, however, is that the extending class is a container-specific imple-
mentation. Figure 9.3 diagrams the inheritance hierarchy.

F I G U R E 9 . 3 Servlet inheritance hierarchy

All servlets converted from a JSP must utilize the javax.servlet.jsp
.JspPage interface. It contains two important methods:

void jspInit() is invoked when the first request is made to initialize
the JSP.

void jspDestroy() is invoked by the container to clean up resources—
for example, when the container shuts down, or when the generated
servlet is unloaded from memory.

To provide additional functionality, a declaration can be used to override both
these methods within the JSP. Declarations are covered in the next section,
“JSP Elements.”

Next, let’s look at the interface javax.servlet.jsp.HttpJspPage. It
adds the most important method:

void _jspService(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException captures every
JSP request. (The _jspService(…) method is to the JSP as the
service(…) method is to the servlet.

The implementation for this method is generated by the container and should
not be overridden.

JSP to servlet Servlet

javax.servlet.Servlet (interface)

javax.servlet.jsp.JspPage (interface)

javax.servlet.jsp.HttpJspPage (interface)

javax.servlet.GenericServlet (interface)

javax.servlet.http.HttpServlet (class)

http://www.sybex.com

The JSP Model 307

The servlet produced is stored on the server for future needs. Initially, the
first client who accesses the JSP page will experience a delay, known as
the first-person penalty. This delay results from the time required to generate
and compile (or translate) the JSP into a servlet. Figure 9.4 illustrates the life-
cycle process.

F I G U R E 9 . 4 JSP life cycle

Specifically, a JSP goes through the following process before it can be uti-
lized: When a client first makes a request for a JSP, the container determines
whether one currently exists. The container uses an internal list that maps
the name of each .jsp page with its compiled .class file. If a reference does
not exist, the .jsp page is translated to Java servlet code and a .java file is
created. The container then compiles the code, generating a .class file, and
loads it into memory. An instance is created, and then the servlet’s init()
method is invoked. At that point, the _jspService(…) method is next in
line. The request and response is passed to the _jspService(…) method and
eventually to the correct doXXX() method.

If a servlet for the JSP already exists, the container will determine whether
the page needs to be regenerated or recompiled. Based on server settings, the
container might regenerate the JSP if a timeout occurred since the last gen-
eration. A time-stamp change to the JSP page will also cause an update to the
servlet.

Finally, if the server decides to discard the generated servlet, it calls the
servlet’s destroy() method, which drops the reference to the servlet and
sets it up for garbage collection.

The process is as follows:

1. Translate the page (.jsp to .java).

2. Compile the JSP page (.java to .class).

3. Load the class.

4. Create the instance.

5. Call jspInit() when the page is first initialized.

Translated

First request

Future requests

Response

JSP

JSP
JSP Other JSPs

Servlet

Browser

http://www.sybex.com

308 Chapter 9 � Java Server Pages (JSPs)

6. ∗Call_jspService(…) for every request made to the JSP.

7. Call jspDestroy() when the JSP is destroyed by the server.

∗All future requests are serviced by the servlet (assuming no changes are
made to the JSP).

Now that you understand the general ideas and life cycle behind Java
Server Pages, we will focus on the rules and semantics associated with build-
ing these powerful pages.

JSP Elements

A JSP page is made up of a variety of tags and elements. Some ele-
ments help include pieces of Java code, while others transfer control to
another object to carry out an intended task. In this section, we will cover
acceptable scriptlet techniques used to incorporate Java expressions, variables,
methods, code blocks, or conditional statements within a JSP page. Again,
the JSP page places priority on web design by making HTML the primary
focus, but it still allows the use of Java code in a scripting format. It is a
feature and available, but not always encouraged.

Values assigned to JSP elements are case sensitive.

This section covers the following element types:

� Hidden comment

� Declaration

� Expression

� Scriptlet

� Directive

Hidden Comment

A hidden comment identifies text that should be ignored by the JSP con-
tainer. Hidden comments are usually used to explain behavior or to
comment out JSP code.

http://www.sybex.com

JSP Elements 309

JSP Syntax

<%-- comment --%>

XML Syntax

None

Example

<HTML>

<HEAD><TITLE>A Comment Example</TITLE></HEAD>

<BODY>

<H2>Sample Comments</H2>

<%-- this comment is not included in the response --%>

</BODY>

</HTML>

Text written within hidden tags is not included in the response body.
Instead, the information is used to help the developer understand and utilize
the source code more effectively.

Declaration

A declaration declares Java variables or methods that future Java code can
access within the JSP page.

JSP Syntax

<%! declaration; [declaration;]+ … %>

Example

<%! int k=0;

 int a, b, c;

 Color redColor = new Color(255, 0, 0);

 private static final String MESSAGE=“Hello”;

 public String getMessage() {

 return MESSAGE;

 }

%>

http://www.sybex.com

310 Chapter 9 � Java Server Pages (JSPs)

XML Syntax

<jsp:declaration>

 declaration; [declaration;]+ …

</jsp:declaration>

Example

<jsp:declaration>

 int k=0;

 int a, b, c;

 Color redColor = new Color(255, 0, 0);

 private static final String MESSAGE=“Hello”;

 public String getMessage() {

 return MESSAGE;

 }

</jsp:declaration>

Any declaration that is valid within the Java programming language is
valid within the declaration JSP elements. This includes multiple declara-
tions as well as variable declarations combined with method declarations.
The use of the static keyword has the same effect as declaring a static vari-
able in a Java class—the value is shared by all instances of the class. On a
more general note, you must first declare a variable before using it in future
code snippets or scriptlet code (we will discuss the latter shortly, under
“Scriptlets”).

Consider the following rules when writing declarations:

� You can declare static or instance variables, new methods, or inner
classes.

� Each variable declaration must end with a semicolon.

� Variables and methods available through import statements are acces-
sible without requiring additional declarations.

� After declaring a variable or method, the information is available to
subsequent Java code.

� It usually contains code that would go outside the servlet’s
_jspService(…) method.

http://www.sybex.com

JSP Elements 311

The methods jspInit() and jspDestroy() can be implemented within a dec-
laration. These methods are called by the servlet’s init() and destroy()
methods. The JSP, however, cannot override the servlet’s init() and
destroy() methods because they are declared final by the background servlet.

Expression

An expression is a valid statement of logic used within a JSP page. It indicates
a variable or method invocation whose resulting value is written to the
response output stream. Because all expressions are computed and converted
to String objects, they are most commonly used to provide dynamic String
information to the response body.

JSP Syntax

<%= expression %>

Example

The file you accessed is <%= array.length %>

bytes in length.

Your randomly selected number is:

<%= Math.round(Math.random()*100) %>.

XML Syntax

<jsp:expression>

 expression;

</jsp:expression>

Example

The file you accessed is <jsp:expression>

array.length </jsp:expression> bytes in length.

Your randomly selected number is: <jsp:expression>

Math.round(Math.random()*100) </jsp:expression>.

When an expression element is encountered, the expression itself is

1. Evaluated

2. Converted to a String object

3. Inserted into the response output stream

http://www.sybex.com

312 Chapter 9 � Java Server Pages (JSPs)

The output generated from an expression is similar to the results that you
would receive from an out.println() statement.

Because Java code is now being used as a scripting language, there are a
few rules that apply. Consider the following:

� Expressions are generally not terminated with a semicolon. (Some
servers do not require a semicolon; others do).

� They are evaluated from left to right.

� They can be composed of more than one part or expression.

The ternary operator provides an example of how multiple expressions
can exist within a single expression:

<%= (boolean evaluation) ?

 (true expression) :

 (false expression)

 %>

Scriptlet

A scriptlet is a code fragment used within a JSP page. It can consist of multiple
statements, made up of variable declarations, code blocks, and conditional
and iterative statements. Conditional statements consist of if, if/else, and
switch blocks, and iterative statements are represented by for, while,
and do loops.

When a scriptlet is translated to the servlet, it is placed within the
_jspService(…) method. Consequently, static blocks cannot be defined
within a scriptlet.

JSP Syntax

<% code fragment %>

Example

<%

 String rate = request.getParameter("taxRate");

 int value;

 try {

 value = Integer.parseInt(rate);

http://www.sybex.com

JSP Elements 313

} catch (NullPointerException e) {

%>

<%@ include file=”error.html” %>

<%

}

%>

XML Syntax

<jsp:scriptlet>

 code fragment;

</jsp:scriptlet>

Example

<jsp:scriptlet>

 String rate = request.getParameter("taxRate");

 int value;

 try {

 value = Integer.parseInt(rate);

 } catch (NullPointerException e) {

 </jsp:scriptlet>

<jsp.directive.include> include file=“error.html”

 </jsp:include>

<jsp:scriptlet>

}

</jsp:scriptlet>

The logic for a scriptlet is embedded within the body of the JSP servlet’s
_jspService(…) method. This means the logic is executed with each
request. In addition, all implicit objects (which we will discuss in the upcom-
ing section, “Implicit Objects”) are available to the scriptlet. If the scriptlet
generates output, it is buffered in the out (JspWriter’s) object, which is
then sent to the client.

Scriptlets provide a way to include fragmented Java code to help gener-
ate a response. A scriptlet differs from a declaration in that the text can be
broken up into pieces. For example, an if block can be defined within a
scriptlet tag. Without completing the else block, you can insert a different
JSP tag to perform a particular behavior. You can then conclude the else

http://www.sybex.com

314 Chapter 9 � Java Server Pages (JSPs)

block with a final scriptlet. Within the scriptlet, you can include the
following tag types:

� Declaration (variable, method, class)

� Expression (valid variable or method invocation)

� Any implicit or explicit object declared with a jsp:useBean element

� Any valid scripting language statement

Not only is it important for you to know what you can include within a
scriptlet, but the objectives require you to distinguish between correct and
incorrect iteration and conditional scriptlet code.

Statements

When writing either iteration or conditional statements within a scriptlet,
you should be concerned with two factors. The first is how curly braces are
handled, and the second is how code is interpreted within and outside the
scriptlet block.

The rules for using curly braces within a scriptlet are the same as those
used within a regular Java application.

� Conditional or iteration statements require braces if more than one
line of code within the body must be evaluated.

� Opening braces can appear on the statement’s declaration line or later.

� All opening braces must have a matching closing brace.

There is no difference between writing a conditional statement or an
iterative statement. The rules that apply are standard to the Java language.
When a JSP is precompiled, the server reads in the JSP and creates a servlet.
All scriptlet statements are placed within the servlet as is, without modifi-
cation. Consequently, anything legal in a normal block is legal within a
scriptlet.

The following code demonstrates acceptable scriptlet code:

<% if(true) %>

 Life is great!

<% else { %>

 Life is tough.

 But will get better.

<% } %>

http://www.sybex.com

JSP Elements 315

The code snippet translates to the following Java code:

if(true)

 out.println(“Life is great!”);

else {

 out.println(“Life is tough.”);

 out.println(“But will get better.”);

}

Text outside the scriptlet is automatically written to the output stream.
However, text within the scriptlet tags must be valid Java code. For example,
the following example fails:

<% for(int i=0; i<5; i++){

 To be or not to be.

 } %>

An error is generated because a String cannot simply exist within a code
block. Utilizing the appropriate rules, the next example succeeds:

<% for(int i=0; i<5; i++) { %>

do something else

<% out.println(“i is equal to: “ + i); %>

<% } %>

Any text or scriptlet code between the braces is part of the for loop and
will be evaluated the number of times specified within the for loop iteration
block. In the previous example, “do something else” will print five times,
along with the statement about the value of i.

Scriptlets are a quick and dirty way to provide functionality. Unfortu-
nately they enable you to write sloppy code that obscures the distinction
between the presentation (HTML) and business logic (Java code). The rec-
ommended alternative is to use JavaBeans or custom tags. They require
more work to write and access, but provide greater flexibility and clarity
with the code design. We will cover these topics later in this chapter and in
the next.

Directive

A directive enables a JSP page to control the overall structure for the trans-
lation phase of the servlet. Directives provide global information independent
of a specific request. Some examples include incorporating classes or other

http://www.sybex.com

316 Chapter 9 � Java Server Pages (JSPs)

files, and defining page characteristics. The three types of directives are
as follows:

� The include directive

� The page directive

� The taglib directive

We will discuss each directive in detail by describing its purpose and how
it is defined in JSP and XML syntax.

The include Directive

The include directive includes a static file in a JSP page.

JSP Syntax

<%@ include file=“relativeURL” %>

XML Syntax

<jsp:directive.include file=“relativeURL” />

Example

include.jsp:

<HTML>

<BODY>

The quote for the day is:

“<%@ include file=“dailyQuote.jsp” %>”

</BODY>

</HTML>

dailyQuote.jsp:

<%! public String generateQuote() {

 String quote=null;

 // accesses file to get a quote

 return quote;

 }

%>

<%= generateQuote() %>

This code displays the following in the page:

The quote for the day is: “Never regret.”

http://www.sybex.com

JSP Elements 317

The purpose of an include directive is to insert a file in a JSP page when
it is translated. The types of files consist of a JSP page, HTML file, XML doc-
ument, or text file. The process of including a file in your current JSP page
is referred to as a static include. This means the text of the included file is
added to the JSP page. This process is somewhat literal—meaning a file that
contains interpretive tags, such as <HTML></HTML>, will be literally included
in the file.

The contents of the file specified with this directive are preprocessed, and the
resulting output is placed in the original JSP page. When the preprocessor
encounters any static text (<HTML>…</HTML>), the preprocessor is supposed
to generate out.println(“\r\n<html>…</html>”) statements. The resulting
output is then captured by the compiler and inserted into the original
JSP page.

If the included file is a JSP page, the JSP elements are translated and
included in the JSP page. After the include file is translated, the translation
process continues with the original JSP.

A container can behave in different ways when handling include files.
Depending on the JSP container, you might expect:

� The JSP page to be recompiled if the include file changes

� The include file to be opened and available to all requests, or to have
security restrictions

The value for the file attribute is relative, which means the path consists
of the URL minus the protocol, port, and domain name. Some examples
include:

� error.jsp

� temp/buyNow.html

� /beans/generateReceipt.jsp

When the relative path starts with a forward slash (/), the path is relative
to the JSP application’s context. If the relative URL starts with a directory or
filename, the path is relative to the JSP page.

The page Directive

A page directive defines attributes that apply to an entire JSP page.

http://www.sybex.com

318 Chapter 9 � Java Server Pages (JSPs)

JSP Syntax

<%@ page ATTRIBUTES %>

A page directive is used to provide information to the JSP page. Conse-
quently, many attribute values are used to define data for the page. Table 9.1
list all page directive attributes, their descriptions, and their default values.

T A B L E 9 . 1 page Directive Attributes

Attribute Description Default Value

language Defines the scripting language used in
scriptlets, declarations, and expressions
in the JSP page.

java
Legal value for
the JSP 1.2 spec

extends Delineates the fully qualified name of
the superclass for the Java class in the
JSP page.

package.class

import Identifies the classes available to the
scriptlets, expressions, and declarations
in the JSP page. A comma is used to
separate the multiple imports. The fol-
lowing packages are implicitly
imported:

java.lang.*
javax.servlet.*
javax.servlet.jsp.*
javax.servlet.http.*

package.class
package.*
package.class,
package.class

session Defines whether the client must join an
HTTP session to use the JSP page. true
refers to the current or new session,
whereas false indicates that you can-
not use a session object, but you can
still use beans, as long as they are not
part of a session object.

true

buffer Used by the out object to handle output
sent from the compiled JSP page to the
browser.

8kb

http://www.sybex.com

JSP Elements 319

autoFlush Indicates whether to automatically
flush the buffer after it is full. If set to
false, an exception will be thrown
when the buffer overflows. A false
value cannot be used when the buffer
is set to none.

true

isThreadSafe Defines whether the JSP page is thread-
safe. A true value means that concur-
rent client requests to the JSP page will
not cause corruption. This is usually
done through synchronization within
the JSP page. A false value means the
container must send client requests one
at a time.

false

info Declares a text string accessible from
within the servlet.

Custom to the
container

errorPage Describes the pathname to the page
used to display error messages when
exceptions are raised.

relativeURL

isErrorPage Defines whether the JSP page is an
error page. A true value allows the
exception object to be used within the
JSP page. A false value indicates that
you cannot use the exception object in
the JSP page.

false

contentType Defines the MIME type and character
encoding that the JSP page uses for the
response.

text/html;
charset=ISO-
8859-1

pageEncoding Identifies the character encoding used
for the JSP response.

ISO-8859-1

T A B L E 9 . 1 page Directive Attributes (continued)

Attribute Description Default Value

http://www.sybex.com

320 Chapter 9 � Java Server Pages (JSPs)

Example

<%@ page import=”java.io.*, java.util.*” %>

<%@ page language=”java” pageEncoding=”ISO=8859-01” %>

XML Syntax

<jsp:directive.page pageDirectiveAttribute [+

 pageDirectiveAttribute] />

Example

<jsp:directive.page errorPage=“error.jsp”

 extends=“java.awt.Color” isThreadSafe=“true” />

The attributes apply to the entire JSP page and any static include files.
The combination of the two is referred to as a translation unit.

The following rules apply to the page directive:

� You can use the page directive more than once in a translation unit.

� You can use a page attribute only once in a translation unit, except for
import. (The import statement operates similarly to Java code.)

� A page directive can be placed anywhere within the JSP page
or included files. (It is good practice to place it at the top of the
JSP page.)

The taglib Directive

A taglib directive defines a tag library and prefix for the custom tags used in
the JSP page.

JSP Syntax

<%@ taglib uri=“URIForLibrary” prefix=“tagPrefix” %>

Example

<%@ taglib uri=“http://www.company.com/tags”

 prefix=“public” %>

<public:loop>

…

</public:loop>

XML Syntax

None

http://www.sybex.com

JSP Elements 321

The taglib directive enables custom tags to be included in a JSP page. The
first attribute defines the tag library, whereas the second specifies the tag pre-
fix. The taglib must be defined before the use of a custom tag. Although there
can be more than one taglib directive defined, the prefix must be unique.

There are two attributes to consider. The Uniform Resource Identifier, or
uri, describes the set of custom tags associated with the prefix tag. The
prefix is the name that precedes the custom tag name. Empty prefixes are
illegal, and the following prefixes cannot be used because they are reserved
by Sun Microsystems: jsp, jspx, java, javax, servlet, sun, and sunw.

Knowing the different attributes and syntax rules related to the four types
of scripting tags can be a bit confusing. Table 9.2 organizes each tag and
identifies its major features.

T A B L E 9 . 2 JSP Elements

Standard

Tag JSP Syntax XML Syntax Attribute Purpose

Hidden <%-- comment --%> None None Comments

Directive <%@ include %>
taglib
page

<jsp:directive.include |
jsp.directive.taglib |
jsp.directive.page />

file
uri, prefix
(language,
extends, import,
session, buffer,
autoFlush,
isThreadSafe,
info, errorPage,
isErrorPage,
contentType)

Control
and define
JSP struc-
ture before
translation

Declaration <%! declaration %> <jsp:declaration>
</jsp:declaration>

None Declare
variables
and
methods

Scriptlet <% scriptlet %> <jsp:scriptlet>
</jsp:scriptlet>

None Code
fragment

Expression <%= expression %> <jsp:expression>
</jsp:expression>

None Variable or
method
invocation

http://www.sybex.com

322 Chapter 9 � Java Server Pages (JSPs)

The exam requires you to know the JSP syntax, meaning the opening and
closing tags, and XML syntax of each tag. In addition, you must understand
the purpose of each and how it is used.

Implicit Objects

Java code embedded within a JSP tag has access to many of the same
objects available to a servlet. These are referred to as implicit objects. Some
examples include the HttpSerlvetRequest object, known as request, or
the ServletContext, known as application. Currently the container pro-
vides nine predefined variables with specified names that JSP-embedded Java
can utilize. In this section, we will cover each predefined variable, its pur-
pose, and functionality:

The application object The application object is of the ServletContext
data type. It provides a set of methods to communicate with the container.
There is one context per web application, which means the application
object can access the entire application. This is known as application
scope. In general, separate contexts or applications do not share
variables.

In addition, the application variable is often used to acquire parameter
values from the context-param XML tag. This tag is used to initialize
variables from the deployment descriptor level. It is the same convenience
you are granted with a servlet, just made available to a JSP page. The
following example demonstrates the process.

The web.xml file might look something like the following:

<context-param>

 <param-name>paramName</param-name>

 <param-value>paramValue</param-value>

</context-param>

Within the JSP or scripting code, you could access this information by
making the subsequent call:

application.getInitParameter(“paramName”);

These variables are analogous to creating static global variables for your
web application.

http://www.sybex.com

Implicit Objects 323

The pageContext object The pageContext object provides the JSP with
information about the current request, also known as its page attributes.
These include any parameters, or handles to the session, request,
context, or outputStream object. The javax.servlet.jsp
.PageContext abstract class provides the following convenience methods
to access other implicit objects from the pageContext:

� getOut()

� getException()

� getPage()

� getRequest()

� getResponse()

� getSession()

� getServletConfig()

� getServletContext()

It also provides methods for forwarding, inclusion, and error handling:

� forward()

� include()

� handlePageException()

Because the pageContext object provides a single point of access, it is
also an ideal location to set attribute values for sharing data with all other
application components.

It has a page scope, which means the object can be accessed only directly,
through the _jspService(…) method.

The config object The config object is of the ServletConfig data
type. It enables the container to pass information to the JSP page before
it is initialized. The scope of the config object is limited to the page.

An object limited to the page scope is bound to the javax.servlet.jsp
.PageContext abstract class. This means the current JSP page is placed
inside the PageContext as long as the JSP page is responding to the cur-
rent request. Using the PageContext’s implicit object, pageContext, you
can access the config attributes, such as all the namespaces or other classes
associated with the current JSP page, through the getAttribute(String
name) method.

http://www.sybex.com

324 Chapter 9 � Java Server Pages (JSPs)

The request object The request object initiates the _jspService(…)
method upon a client’s call. When created, the request object generates
header information, such as cookies, the intent or type of request, such as
a GET or POST, and possible parameters passed by the client.

The request object is bound to the ServletRequest interface, meaning
its data is accessible through the getAttribute(String name) method.
It is designed, however, to support method calls to an implementation-
specific subclass of javax.servlet.ServletRequest, such as
HttpServletRequest.

It has a request scope, which implies that the object’s reference exists as
long as the request is alive. Technically, a new request object is created
for the client request and destroyed when a response is generated. Even if
a forward(…) or include(…) is performed, the request object is still
in scope.

The response object The response object is an instance of the
implementation-specific subclass of the javax.servlet.ServletResponse
interface, often known as HttpServletResponse. Unlike servlets, it
enables HTTP status codes and headers in the JSP to be changed after out-
put has been sent to the client. This is due to the output stream being
buffered (assuming the page directive buffer attribute is not set to none).

The response object has a page scope, which means it is bound to the
PageContext and can be accessed directly within the _jspService(…)
method—a period more commonly referred to as the life of the current
request.

The session object When a client makes a request, a session is automat-
ically created to maintain client information. This object is referenced by
the session object and is available as long as session=false is not defined
with a page directive. By using the getAttribute(String name) method,
you can retrieve data stored in an object by passing in a specified name.

As of the servlet 2.2 specification, the getValue(String name) method is dep-
recated and replaced with the getAttribute(String name) method.

This object has a session scope, which means it exists for the life of the ses-
sion and is bound to the PageContext. A session object is usually useful for
getting a unique ID associated with the entire transaction. For security

http://www.sybex.com

Implicit Objects 325

reasons, the current specification allows only for the retrieval of the
sessionID that is associated with the client request and passed to the
PageContext to make it available to the JSP. Previously, you could get a
list of sessions or a session by using an ID. This approached proved to be
less secure.

The out object The out object is used to write response information to the
client. It is of the class javax.servlet.jsp.JspWriter, which is a buff-
ered version of the java.io.PrintWriter class. The buffered size can be
configured by using the buffer attribute in the page directive. For example:

<%@ page buffer=”16kb” %>

The page object The page object is similar to the this keyword in Java.
It represents an instance of the servlet generated by the JSP page for the
current request. The page object exists for future use when another lan-
guage can be specified by using the language attribute of the page directive.
Until then, it isn’t used much. When used in the future, it is important to
know it has a page scope.

The exception object The exception object is an instance of the
java.lang.Throwable class. It represents the uncaught Throwable
object that results in the error page being invoked. Let’s say an uncaught
exception is encountered during request processing, for example, a
RuntimeException; you could use the implicit exception object within
the error page to print out a stack trace.

If you use the errorPage attribute of the page directive, the exception object
is not available to that page. Only the error page itself can access the exception
object.

This object has page scope and can be used to help debug your code. The
following snippet demonstrates how:

<@page isErrorPage=“true” %>

<pre>

<% exception.printStackTrace(new PrintWriter(out)); %>

</pre>

In the code example, the error page prints a stack trace of the exception
object. The exam requires that you know the functionality of each
implicit object, its data type, and scope. Table 9.3 lists the characteristics
of each object.

http://www.sybex.com

326 Chapter 9 � Java Server Pages (JSPs)

All implicit objects exist within a defined scope. The scope attribute
defines where the object can be referenced and when the reference is
removed. Each scope can be summarized in the following way:

Application scope Objects with an application scope are available for the
life of the application. All components assigned to this range have access to
pier components within the same context. Figure 9.5 provides a visual rep-
resentation of the access area of an object with application scope.

F I G U R E 9 . 5 Application scope

T A B L E 9 . 3 Implicit Objects and Their Scope

Implicit Object Data Type Scope

application javax.servlet.ServletContext Application

config javax.serlvet.SerlvetConfig Page

request javax.servlet.http.HttpServletRequest Request

response javax.servlet.http.HttpServletResponse Page

session javax.servlet.http.HttpSession Session

pageContext javax.servlet.jsp.PageContext Page

out javax.serlvet.jsp.JspWriter Page

page java.lang.Object Page

exception java.lang.Throwable Page

Scope 1

Scope 2

Scope 3

Container

Ap
p

3 Servlet
Servlet

Servlet

Ap
p

1 Servlet
Servlet

Servlet

Ap
p

2 Servlet
Servlet

Servlet

http://www.sybex.com

Implicit Objects 327

Page scope An object with a page scope is available only within the cur-
rent page. It can be accessed directly within the _jspService(…) method
or indirectly with any custom methods (provided there is a method that
returns a handle to the object) of the originating JSP page. Figure 9.6 dem-
onstrates how the config object, which has a page scope, is available
within its original page, but uses a new config instance when a request
is transferred to a new page.

F I G U R E 9 . 6 Page scope

Request scope An object with a request scope is accessible from all
pages processing the same request. This includes dispatched requests. If a
request is transferred by using either of the RequestDispatcher methods
include(…) or forward(…), the component is in scope. Figure 9.7 shows
how an object with a request scope (for example, the request object) is
still in scope after a dispatch occurs.

Session scope Objects with a session scope are available for the life of
the session. Until the session is closed manually or automatically due to a
method call or a timeout, components can exist and share data. Figure 9.8
displays the available range for an object with a session scope.

 config = in scope

public class MyServlet {
 public void _jspService(…request,…response) {
 config.getServletContext();

 …include(…request,…response)
 …forward(…request,…response)

 }
 public void doSomething() {
 getServletConfig().getSerlvetContext();
 }
}

public class AnotherServlet… {

 config = not in scope

http://www.sybex.com

328 Chapter 9 � Java Server Pages (JSPs)

F I G U R E 9 . 7 Request scope

F I G U R E 9 . 8 Session scope

It is also important to understand the life cycle of implicit objects in order
to know how and when to use them. We have covered four scriptlet formats,
which include:

Expression <%= … %> Expressions are evaluated at HTTP processing
time or when the HTTP server processes the request. Expressions are left
unprocessed until the buffer is written out to the client, meaning all
implicit objects have been initialized and are available.

<%= locateClient(request) %>

 request = in scope

public class MyServlet {
 public void _jspService(…request,…response) {
 request.getMethod();

 …include(request, response,…)
 …forward(request, response,…)
 }
 public void doSomething(
 HttpServletRequest req) {
 req.getMethod();
 }
}

public class AnotherServlet… {

 request = in scope

In
 s

co
pe

In
 s

co
pe

Servlet

Servlet

Servlet

Not in scope
Session started

Session ended
Not in scope

http://www.sybex.com

Implicit Objects 329

Scriptlet <% … %> Scriptlets are executed at request-processing time and
embedded within the _jspService(…) method. This means all implicit
objects have been initialized and can be accessed directly.

<%

 out.print("Tomorrow or the next life,” +

 “whichever comes first");

%>

Declarations Declarations are initialized when the JSP’s jspInit()
method is invoked. Its methods however, are available outside the
_jspService(…) method. In order to access implicit objects, they must
either be passed as a parameter, or there must be an available servlet
method which provides a reference to the instance.

<%!

 public String locateClient(HttpServletRequest req) {

 ServletConfig config = getServletConfig();

 return req.getRemoteHost();

 }

%>

Directive <%@ … %> Directives are invoked at translation time. When
another page is included into the current page, its contents are inserted in
the _jspService(…) method. The code for the included file is added to the
code of the calling JSP page, right where the include directive is placed.
Consequently, all the implicit objects are available to the code of the
included page. Consider the following example:

jspMain.jsp

<HTML>

<BODY>

<%@ include file=“second.jsp” %>

</BODY>

</HTML>

second.jsp

<HTML>

<BODY>

<%= request.getRequestURI() %>

</BODY>

</HTML>

http://www.sybex.com

330 Chapter 9 � Java Server Pages (JSPs)

Implicit objects are a key feature to providing a JSP with all the function-
ality available to a servlet. For greater functionality a JSP can use “actions”
to invoke a behavior.

Actions

Aside from displaying HTML and invoking scripts within your JSP
page, you might want to pass certain tasks off to another servlet or JSP to han-
dle. You might even want to use a JavaBean to set or get property values useful
to the application—or maybe include some sort of plug-in within the web page.
These tasks can be realized by using actions. Actions are Java tags that affect the
runtime behavior of the JSP. In this section, we will go through each of the fol-
lowing actions by discussing its purpose and syntax, and providing examples:

� jsp:include

� jsp:forward

� jsp:plugin

� jsp:param

� jsp:useBean

� jsp:setProperty

� jsp:getProperty

jsp:include

A servlet can transfer a request to another resource to manage the response
by using the RequestDispatcher. JSPs have this same functionality. Instead
of acquiring a handle to the dispatcher, the tag jsp:include, or the include
action, is used to temporarily transfer control and allow another resource
access to the current request and response objects. This tag enables you
to include either a static or dynamic resource. If static, the content of the
resource is included in the JSP page. If dynamic, the request is sent and
returned with a result included in the JSP page. After the action is finished,
the JSP container continues to process the rest of the JSP page.

An included page can access only the JspWriter object. It cannot set headers
or set cookies. Calls to related methods will be ignored.

http://www.sybex.com

Actions 331

Syntax

<jsp:include page=“relativeURL” />

or

<jsp:include page=“relativeURL” flush=“true|false” >

<jsp:paramname=“parameterName” value=“parameterValue”>

</jsp:include>

Example

<jsp:include page=“/header.jsp”/>

<jsp:include page=“/greeting.jsp”>

 <jsp:param name=“username” value=“chessMaster” />

</jsp:include>

Inclusion is processed at request time. Each attribute is evaluated and
parameters set, if necessary. The include tag has three attribute types that
can be used:

The page tag defines the relative URL of the target source. To include
multiple pages within a page, you must provide a separate jsp:include
action for each.

The param tag identifies any parameter values that need to be passed
to the target.

The flush tag is equal to either true or false. A true value signifies
that the page output is buffered and flushed prior to being returned to the
original JSP. A false value means the buffer is not flushed. The default
value is false.

In JSP 1.1, a bug within a provided JSP library class caused an error to generate
if the flush attribute was not specified or had a value of false. Developers were
required to specify the flush=true attribute to avoid receiving an error.

An include can be used in two ways. The first is as a directive with a file
attribute to “include” a static file at compile time. The second approach is via
an action. An include action uses the page attribute to incorporate another
file’s output, either static or dynamic, in the response at request time.

jsp:forward

Like the jsp:include, the forward action transfers control of the current
request handler to a specified resource. The target source is then responsible

http://www.sybex.com

332 Chapter 9 � Java Server Pages (JSPs)

for generating the response. Similar to the RequestDispatcher’s forward(…)
method, all buffered output is cleared when the request/response object is sent.
If the output has already been flushed, the system throws an exception.

The target source can be quite flexible. It can be an HTML file, another
JSP page, or a servlet, assuming all share the same application context as the
forwarding JSP page. After a forward action is invoked, execution of the
current page is terminated.

Any lines after the jsp:forward block are not processed.

Syntax

<jsp:forward page=“relativeURL” />

or

<jsp:forward page=“relativeURL” >

 <jsp:param name= “parameterName”

 value=“parameterValue”>

</jsp:forward>

Example

<% if(session.getAttribute(“checkOut”)
.equals(“checkOut”)) { %>

 <jsp:forward page=“/processReceipt.jsp”/>

<% } %>

You can pass parameters to the target source by using the param tag, mak-
ing it a dynamic resource. The name attribute defines the parameter, and the
value is either a case-sensitive literal String or an expression that is evalu-
ated at request time.

The following rules apply to the output stream associated to a jsp:forward
action:

� If the page output is buffered, the buffer is cleared prior to forwarding.

� If the page output is buffered and the buffer was flushed, an attempt
to forward the request will result in an IllegalStateException.

� If the page output was unbuffered and anything has been written
to it, any attempt to forward the request will result in an
IllegalStateException.

http://www.sybex.com

Actions 333

jsp:plugin

When creating web applications, you might need to include Java plug-in
software to enhance the graphical or functional behavior. The plugin action,
defined as jsp:plugin, displays or plays an applet or bean in the browser. The
plug-in is either built into the browser or downloaded from a specific URL.

Syntax

<jsp:plugin

 type=“bean|applet”

 code=“classFileName.class”

 [optional attributes]

 <jsp:params>

 <jsp:param name=“paramName” value=“paramValue” />

 </jsp:params>

 <jsp:fallback> text message for user

 </jsp:fallback>

</jsp:plugin>

The jsp:plugin element is made up of four parts: mandatory attributes,
optional attributes, the jsp:params tag, and the jsp:fallback tag.

Mandatory attributes indicate the type of plug-in component and its class
name. Table 9.4 lists the mandatory attributes for the jsp:plugin action.

Optional attributes help locate the code, position the object within the
browser window, and specify any URL to download plug-in software.
Table 9.5 lists the optional attributes for the jsp:plugin action.

T A B L E 9 . 4 jsp:plugin Mandatory Attribute List

Attribute Description

type The type of object the plug-in will execute.
Your choices are bean or applet. There is no
default value for this attribute.

code The class filename. You must include its
.class extension.

http://www.sybex.com

334 Chapter 9 � Java Server Pages (JSPs)

T A B L E 9 . 5 jsp:plugin Optional Attribute List

Optional

Attribute Description

codebase The class file directory or path to the directory for the
Java class. If a directory is not specified, the JSP page
or path is used instead.

name The name of the bean or applet instance.

archive A list of pathnames for files that will be preloaded.
Each file is separated by a comma.

align The position of the plug-in output within the web page.

Your choices are bottom, top, middle, left, or right.

height The initial vertical pixel measurement of the
plug-in output.

Not required, but some browsers will not require
a height of 0.

width The initial horizontal pixel measurement of the
plug-in output.

Not required, but some browsers will not allow
an object of 0 height.

hspace The number of pixels to the left and right of the
plug-in output.

vspace The number of pixels on the top and bottom of the
plug-in output.

jreversion The Java Runtime Version required to run the plug-in.
The default value is 1.2.

nspluginurl The URL where the plug-in can be downloaded from
Netscape Navigator.

iepluginurl The URL where the plug-in can be downloaded from
Microsoft Internet Explorer.

http://www.sybex.com

Actions 335

The jsp:plugin action has two sub-elements:

jsp:params allows parameter names and values to be passed to
the object.

jsp:fallback displays a text message for the user if the plug-in can-
not be started. If it manages to start, but the bean or applet cannot,
then a pop-up dialog appears to explain the problem.

Example

<jsp:plugin type=“bean” code=“AnimatedLogoBean.class”

 codebase=“com/eei/company”

 name=“logo”

 archive=“companyAdds.jar”

 align=“top”

 height=“50”

 width=“150”

 hspace=“5”

 vspace=“5”

 jreversion=“1.2”>

 <jsp:params>

 <jsp:param name=“message” value=“On the edge of

 technology” />

 </jsp:params>

 <jsp:fallback>

 <p>Sorry, but the Plug-in could not be started.

 </p>

 </jsp:fallback>

</jsp:plugin>

The preceding example displays an animated logo within a company’s
website. Although almost all attributes are used, they are not required. After
the JSP page is translated and invoked, the plug-in will be processed and
imbedded in the web page displayed for the client.

jsp:param

A param action is used to provide a name/value pair to a servlet. It is used
in conjunction with the jsp:include, jsp:forward, and jsp:params
actions. A translation error occurs if the element is used elsewhere. New

http://www.sybex.com

336 Chapter 9 � Java Server Pages (JSPs)

values take precedence over existing values and are scoped within the
include or forward page.

Syntax

For a single parameter:

<jsp:param name=“parameterName” value=“paramterValue” />

Example

<jsp:param name=“ssn” value=“555-55-5555” />

There are two mandatory attributes associated with the param action.
The first is called name. It is the name or key for the parameter. The second
attribute is value. It defines the value of the attribute.

jsp:useBean

A powerful feature of Java Server Pages is the ability to incorporate
JavaBeans within a page. The JSP tags handle the HTML, while the beans
handle the Java logic. The clean separation makes for better readability,
maintainability, and extensibility. This can be accomplished by using the
useBean action. By definition, a JavaBean is simply a class that contains
private data with accessor and mutator methods. These methods perform
all the necessary business logic to arrive at the appropriate result. In addi-
tion, they have the ability to have their attributes changed dynamically.
Through reflection, the container can determine which attributes are vis-
ible and changeable. JSPs benefit from this inclusion because a bean can
perform a distinct task and make the resulting information available to the
JSP page through an accessor method.

The benefit of using a JavaBean over a standard Java class is that with a
bean, the container can be triggered to set bean properties by using parameter
values from the client’s request. For example, if a JSP request object contains
a parameter of taxRate, and the bean has a method called setTaxRate(float
txr), the server will invoke the method passing the attribute value.

The trigger that causes the server to set parameters is an action called
jsp:setProperty. When this action is used with the property attribute set to
an asterisk (*), the server links parameter data with the servlet’s data. We will
discuss this action in the section called “jsp:setProperty.”

http://www.sybex.com

Actions 337

Through introspection, the server can dynamically update the bean so
the JSP page can access the attribute information without having to call
request.getParameter(String name).

Syntax

<jsp:useBean id=“beanInstanceName”

 scope=“page|request|session|application”

{

 class=“package.class” |

 type=“package.class” |

 class=“package.class” type=“package.class” |

 beanName=“{package.class | <%= expression %>}”

 type=“package.class”

}

{ /> | </jsp:useBean> }

Attributes

You can use several attributes to define how the server should use or locate
the bean:

id Specifies the name of the bean. If a bean scope extends beyond the
current page, it can be saved. The key used to acquire the bean instance is
the id name. If the bean instance does not exist, a new bean is created.
This variable is case sensitive. The name must be unique within the trans-
lation unit. Duplicate IDs will result in a fatal translation error.

scope Specifies the extent of the bean’s visibility. There are four options
to choose from: page, request, session, or application.

page scope The bean variable is stored as an instance variable.
Within the page, the bean is used once and then destroyed. You can
use the bean within the JSP page or any of the page’s static include
files. This means files acquired via the include directive are within
scope, while pages acquired from the include action are not in scope.

request scope The bean instance is stored as a request attribute.
This means the bean can be used from any JSP page processing the
same request. Whereas a page scope ends at the onset of a jsp:forward
action, a request scope keeps the bean alive through jsp:forward and

http://www.sybex.com

338 Chapter 9 � Java Server Pages (JSPs)

jsp:include actions. When the response is returned, the bean is
destroyed.

session scope The bean instance is stored as the user’s session
attribute. Consequently, the bean exists across the entire session. If the
client disconnects, the bean will be made available when the client recon-
nects. By default, the session attribute is true. For this reason, it is not
necessary to include the session attribute for a session object to be cre-
ated. If a JSP is defined to not participate in a session via the <%@ page
… %> directive, and attempts to, a fatal transaction error will occur.

application scope The bean instance is stored as a servlet context
attribute and therefore available to the entire application.

class Specifies the class name of the bean. When the bean is con-
structed, the server uses the fully qualifying class name to generate the
instance. If the bean already exists, the class name is not necessary.

type Defines the class type used to cast the bean to its appropriate
data type. When the object is retrieved from a particular scope, it is returned
as a generic object. The bean is then cast to the class type defined. If the
type is not defined, the value defaults to the same type as that defined
by the class variable. If they do not match, a ClassCastException
is thrown. By providing a type attribute without class or beanName
attributes, you can give a local name to an object defined in another JSP
page or servlet.

beanName Replaces the class attribute to create the bean instance. This
value is passed as a parameter to the java.beans.Beans.instantiate(…)
method to create the instance. It enables developers to dynamically create
the bean, because the attribute can accept a request-time attribute expres-
sion as a value.

It is not valid to provide both class and beanName.

Example

<jsp:useBean id=“tax” class=“com.eei.TaxBean”
scope=“application” />

http://www.sybex.com

Actions 339

The jsp:useBean action attempts to first locate an instance of the bean.
If unsuccessful, a new bean will be created from a class or serialized tem-
plate. The following steps are taken to process the bean:

1. An attempt to locate a bean with the scope and ID name you specified
is made.

2. An object reference variable with the name you specified is defined.

3. If the bean is located, a reference to the variable is stored. The bean
is then cast to the given type. If the cast fails, a java.lang
.ClassCastException is thrown.

4. If the bean is not located, and:

b. Neither class nor beanName is given, a java.lang
.InstantiatedException is thrown.

c. class is provided, but is either abstract, an interface, or has
no public no-args constructor (meaning it cannot be instanti-
ated), then a java.lang.InstantiatedException is thrown.

d. class is provided and has a no-args constructor, then the class
is instantiated.

e. beanName is provided, then the java.beans.Beans
.instantiate() is invoked and the reference is stored to the
id name.

5. If the bean is instantiated, and it has body tags between the
jsp:useBean tags, those elements are executed.

There are two major advantages of using JavaBeans within a JSP. The first
is the ability to set attributes, and the second is the ability to define the scope
of the bean. While we have discussed the latter, we now need to address the
technique used to set properties within the bean.

jsp:setProperty

The most significant feature of a bean is its property values. The setProperty
action is used to set the parameter values of the bean in use. The bean’s “get”
and “set” methods are designed to change these values through reflection.
For the container to achieve this task, the methods must begin with a get or
set followed by the property name using an initial capital letter. The power
of this design is that it enables the container to transfer the request parameter

http://www.sybex.com

340 Chapter 9 � Java Server Pages (JSPs)

values from a client request, which could come from a form, to a JSP, which
uses a bean and sets the properties to that bean by using the information
entered by the client.

Syntax

<jsp:setProperty name=“beanInstanceName”

{

 property=“*” |

 property=“propertyName” [param=“parameterName”] |

 property=“propertyName" value=”{string literal |

 <%= expression %>}”

}

/>

Examples

<jsp:setProperty name=“bean” property=“*” />

<jsp:setProperty name=“bean” property=“name” />

<jsp:setProperty name=“bean” property=“name”

 param=“user” />

<jsp:setProperty name=“bean” property=“name”

 value=“Ariela” />

The jsp:setProperty element enables the bean’s properties to be set via
the request parameters or directly. The first example uses a wildcard to indi-
cate all request parameters should be mapped to the instance bean and
altered if there is a match. The second example defines the bean property
name that needs to be assigned a value from the request. The third example
is used when the request parameter name is not the same name as the bean
property. By listing both, the container can map the two together. Finally, the
fourth example directly assigns a value to the bean property regardless of
the request. Figure 9.9 demonstrates how information from the client is
transferred to the bean.

The image describes a scenario in which the user enters an ID and pass-
word into a form. The information is then bundled in a request object and
sent to the JSP page. If necessary, a bean instance is created and the container
will then use the “set” methods to mutate the bean properties to match those
sent through the client request. If the names are different, the param attribute
is used to map the property to the request parameter. Table 9.6 outlines the
jsp:setProperty attributes.

http://www.sybex.com

Actions 341

F I G U R E 9 . 9 The setProperty process

T A B L E 9 . 6 jsp:setProperty Attribute List

Attribute Description

name The name of the bean instance. The name used must
match the id attribute in the jsp:useBean element.

property The name of the bean property. When a wildcard (*) is
used to define the property, the container will search
through all request parameters to find a match to the
bean property. When a match is found, the request
parameter value is assigned to the property. If the
request parameter is an empty string (“”), then the
property is left unaltered.

Password:
(examples: "dairyman88" or "free2rhyme")

ID: OsherAsher @mysite.com

Submit

Request
param="name" value="OsherAsher"
param="pwd" value="1n8t7uc407"

JSP

<jsp:useBean id="Bean" class="Bean.class">
 <jsp:setProperty name="Bean" property="name" />
 <jsp:setProperty name="Bean" property="password" param="pwd" />
</jsp:useBean>

Bean
property:
String name=?
String password=?

property:
String name="OsherAsher"
String password="1n8t7uc407"

http://www.sybex.com

342 Chapter 9 � Java Server Pages (JSPs)

There is one more important feature to know about the jsp:setProperty
element. Not all bean properties are Strings; consequently, you need to know
how the container manages bean properties of other data types. When the client
sends a request, the parameter values are always of type String. These values
are converted to their appropriate data types when stored in the bean’s prop-
erty. The JavaBeans specification states that the setAsText(String name)
method should be used on a property if it has a PropertyEditor class. If a
conversion failure occurs, an IllegalArgumentException is thrown. By
default, PropertyEditors are provided for all primitive and respective
wrapper classes. If the property is of a data type that is not available, the
String will get converted to that of type Object.

After the property value is set, the JSP can retrieve this information by
using the jsp:getProperty element.

jsp:getProperty

As easy as it is to set a bean’s property from within a JSP page, you can get the
values with similar ease by using the getProperty action, or jsp:getProperty
action. When retrieving a bean’s property, it is converted to a String by using
either the toString() method or the wrapper class valueOf(String str)
method if it is a primitive. Once converted, the results are passed to the out-
put stream and finally to the client.

param The name assigned to the request parameter. This
attribute must be used in conjunction with property.
Basically, it maps the request parameter name to the
name of the property in the bean. If param is not used, it
assumes the request parameter is the same as the prop-
erty. If, however, there is no request parameter with the
param name, or if its value is “”, then the container will
leave the bean property unaltered.

value The value assigned to the bean property. This can either
be a request object parameter, a request time-evaluated
expression, or a specific string.

T A B L E 9 . 6 jsp:setProperty Attribute List (continued)

Attribute Description

http://www.sybex.com

Actions 343

Syntax

<jsp:getProperty name=“beanInstanceName”

 property=“propertyName” />

Example

Let’s start by using the following bean, which holds customer
information:

public class CustomerBean {

 private String name;

 …

 public void setName(String name) {

 this.name = name;

 }

 public String getName() {

 return this.name;

 }

 …

}

The web page might allow the user to enter their name, and then that
value could be set by using the jsp:setProperty action. Later, in another
area, we could retrieve that value by using the jsp:getProperty tag. The
following code snippet demonstrates the process:

<jsp:useBean id=“custBean” scope=“session”
class=“CustomerBean” >

 <jsp:setProperty name=“custBean” property=”*” />

</jsp:useBean><HTML>

 <BODY>

 <H1> Hello <jsp:getProperty name=“custBean”

 property=“name” />!</H1>

</BODY>

</HTML>

Assuming the person entered their name as Yoav, the output generated
would simply display the following message:

Hello Yoav!

The process of extracting data is similar to that of the setting it. After the
property value is set for the bean, a call to jsp:getProperty contacts
the identified bean (in this case it’s the CustomerBean) and invokes its

http://www.sybex.com

344 Chapter 9 � Java Server Pages (JSPs)

getName() method. The return value is then sent to the JSP output stream
and converted to a String for display purposes.

Here are some points to consider:

� You must first create an instance of the bean by using the jsp:useBean
element before calling the jsp:getProperty tag.

� The jsp:getProperty tag works on JavaBeans, but not on enterprise
beans. Enterprise beans are formatted to run within an application server
and follow a template form very different from a basic JavaBean. You
could, however, have your JSP tag communicate with a JavaBean, which
communicates with an enterprise bean. It’s a fair workaround.

� If you use the jsp:getProperty tag on a property whose value is
equal to null, a NullPointerException is thrown. If you are using
a scriptlet or expression to retrieve this value, the null keyword is
returned instead.

� You cannot use jsp:getProperty to retrieve values of an indexed
property. An indexed property is an object that is either a collection
or array.

Table 9.7 lists the available attributes for the jsp:getAttribute action.

The jsp:getProperty action is an easy way to retrieve a bean property
value. It adds value to your code in that it makes it more readable and
maintainable by someone who is more skilled in web design then in Java
programming.

The exam expects you to know each action, its sub-actions, and associated
attributes. Table 9.8 lists each action, its attributes, and possible subactions.

Knowing the details associated with each action will help you pass the
exam. Even more importantly, the meanings behind each attribute and how
it is applied further solidify your success.

T A B L E 9 . 7 jsp:getProperty Attribute List

Attribute Description

name The name of the bean instance. The
name used must match the id name
in the jsp:useBean element.

property The name of the bean property whose
value you are looking to display.

http://www.sybex.com

Actions 345

T A B L E 9 . 8 Action Summary

Action Attribute Subtags

<jsp:param> name and value

<jsp:include /> page, flush <jsp:param>

<jsp:forward /> Page <jsp:param>

<jsp:useBean /> id, scope, class, beanName,
type

<jsp:setProperty />
<jps:getProperty />

<jsp:setProperty /> name, property, param, value

<jsp:getProperty /> name, property

<jsp:plugin /> type, code
codebase, name, archive,
align, height, width,
hspace, vspace, jreversion,
nspluginurl, iepluginurl

<jsp:params />
<jsp:fallback >

The Switch Over

International Phone Card, Inc. has recently decided to change their web
application to allow for more flexibility and maintainability. As a startup
company, they were limited to acquiring a development staff whose skills
consist mostly of web design. As a result, they were paying huge funds to
a consulting group to develop and maintain their servlet-driven web site.
Recently, however, they decided on a new long-term approach. Instead of
investing in training their staff in Java development, they will convert their
application to utilize Java Server Pages, which talk to servlets on the front
end. This approach limits their costs because their web designers can focus
on designing the interface; the company needs to contract out only the serv-
let and bean pieces of the application. By separating the Presentation layer
from the Business Logic layer, they are able to utilize their staff more effi-
ciently and cut down on long-term maintenance costs.

http://www.sybex.com

346 Chapter 9 � Java Server Pages (JSPs)

Summary

In this chapter, we covered the basic essentials of a JSP—starting with
its life cycle and moving on to syntactical features. There were two major
coding options discussed in this chapter. The first is the utilization of a tag,
and the second is the utilization of an action.

All four tag types were covered in great detail to ensure you understand
the syntax and purpose behind a scriptlet, expression, declaration, and direc-
tive. Each directive type, include, page, and taglib, was described to
further help define the particulars associated with a directive. Within these
tags you were shown how to acquire access to common objects, known as
implicit objects. They include request, response, out, session, config,
application, page, pageContext, and exception.

The second half of the chapter focused on the available action types and
their behaviors. The list of actions included jsp:param, jsp:include,
jsp:forward, jsp:useBean, jsp:setProperty, jsp:getProperty,
and jsp:plugin.

A solid understanding of the JSP (and XML) syntax, plus knowledge of
how each of these features works will help increase your score substantially
in the JSP section of the exam.

Exam Essentials

Be able to explain the JSP life cycle. A JSP page goes through a mor-
phing process before it can be accessed. Because certain actions take place
before and after it translates, knowledge of the process helps you write a
more efficient and accurate Java Server Page.

Be able to identify the JSP and XML syntax, purpose, and use of each tag
type. There are four tag types, known as directive, declaration, scriptlet,
and expression. It is important to know how to write each correctly by
using either JSP tags or XML tags. Although JSP scriptlet syntax was used
originally, XML syntax is becoming the communication standard within
the J2EE environment.

Be able to define and identify the purpose and functionality or use of implicit
objects. There are nine implicit objects available to a servlet page (JSP page
translated) during the service(…) method. For convenience, they provide
handles to critical information within the scripting section of your JSP page.

http://www.sybex.com

Key Terms 347

Be able to identify, use, and define JSP actions. Again, you are expected
to know the details associated with each action and its syntax. This infor-
mation is necessary to build a suitable JSP page that can accomplish desired
tasks. These actions also help separate the Logic from the Presentation layer.

Key Terms

Before you take the exam, be certain you are familiar with the follow-
ing terms:

actions pageContext object

application page directive

application object page object

application scope page scope

config object param action

declaration plugin action

directive Presentation layer

exception object request

expression request object

first-person penalty request scope

forward action response object

getProperty action scriptlet

hidden comment session object

implicit objects session scope

include action setProperty action

indexed property static

JavaBean taglib directive

JSP model translation unit

out object useBean action

page attributes

http://www.sybex.com

348 Chapter 9 � Java Server Pages (JSPs)

Review Questions

1. Which of the following methods can be overridden by the author of a
JSP page?

A. void jspInit()

B. void_jspService(HttpServletRequest request,
HttpServletResponse response)

C. void jspDestroy()

D. None of the above

2. Which option best describes the life-cycle process of a JSP?

A. JSP page is translated to a servlet
Servlet is loaded into memory
Code is compiled
Instance is created

B. JSP page is translated to a servlet
Code is compiled
Servlet is loaded into memory
Instance is created

C. JSP is compiled
JSP is translated to a servlet
Code is loaded
Instance is created

D. JSP is loaded into memory
Code is compiled
Instance is created

3. Select the option that best describes the order in which JSP methods
are invoked.

A. jspInit(), jspService(), jspDestroy()

B. jspService(), jspInvoke(), _jspDestroy()

C. jspinit(), jspCreate(), _jspService()

D. jspInit(), _jspService(), jspDestroy()

http://www.sybex.com

Review Questions 349

4. Which of the following classes must a JSP servlet extend?

A. javax.servlet.jsp.JspPage

B. javax.jsp.JspPage

C. javax.jsp.Jsppage

D. None of the above

5. The method _jspService(HttpServletRequest request,
HttpServletResponse response) is declared in which of the follow-
ing interfaces?

A. javax.servlet.jsp.JspPage

B. javax.servlet.jsp.HttpJspPage

C. javax.servlet.jsp.tagext.Tag

D. None of the above

6. Which of the following declaration types is not legal to use within a
scriptlet tag?

A. if block

B. Method

C. Variable

D. Code block

7. Which of the following packages is not implicitly imported in a trans-
lation unit?

A. java.lang.*

B. javax.servlet.*

C. javax.servlet.http.*

D. None of the above

8. Which of the following page attributes has a default value of true?

A. session

B. buffer

C. isThreadSafe

D. isErrorPage

http://www.sybex.com

350 Chapter 9 � Java Server Pages (JSPs)

9. If a relative path begins with a forward slash (/), the path is relative to
which of the following?

A. Relative to the JSP application’s document root directory

B. Relative to the current JSP page

C. Relative to the container’s installation directory

D. None of the above

10. Which of the following prefixes can be used for custom tag libraries?

A. jsp

B. jspx

C. servlet

D. servletx

11. When a JavaBean’s scope is defined as application, it is stored as
which of the following?

A. A session attribute

B. A request attribute

C. A servlet context attribute

D. An instance variable

12. Which of the following attribute types uses the java.beans.Beans
.instantiate method?

A. class

B. beanName

C. scope

D. type

13. If you are told a JSP page uses a plug-in bean whose source file is
named MyBean.java and requires a Java Runtime Environment (JRE)
of 1.2 and is located within the same directory as the JSP page, which
of the following element tags would most likely execute successfully?

http://www.sybex.com

Review Questions 351

A. <jsp:plugin type=“bean” code=“MyBean”
jreversion=“1.2” />

B. <jsp:plugin code=“MyBean.class” />

C. <jsp:plugin type=“Bean” code=“/MyBean.class”
jreversion=“1.2” />

D. <jsp:plugin type=“bean" code=“MyBean.class” />

14. Which of the following is not a directive?

A. import

B. include

C. page

D. taglib

E. None of the above

15. Which of the following is not an attribute of the page directive?

A. session

B. autoFlush

C. isThreadSafe

D. uri

http://www.sybex.com

352 Chapter 9 � Java Server Pages (JSPs)

Answers to Review Questions

1. D. The method _jspService(HttpServletRequest req,
HttpServletResponse res) should not be overridden by the JSP
developer. The first and third options fail to define the correct method
(The preceding underscore is missing.) If a developer defined either
method, it would not be considered an override.

2. B. When a client makes a request, and a JSP instance doesn’t already
exist, the appropriate JSP page (.jsp) is located and translated to
servlet source code (.java). The JSP servlet is then compiled (.class),
and the class file is loaded into memory. An instance of the servlet is
then created.

3. D. The jspInit() method is first called to initialize the JSP servlet
when it is first loaded into memory. The _jspService() method is
then called with each future request. Finally, when the JSP is about to
be removed, the jspDestroy() method is called.

4. D. javax.servlet.jsp.JspPage is an interface, not a class. Each
JSP servlet must ultimately implement this interface.

5. B. The _jspService method is defined within the javax.servlet
.jsp.HttpPage interface. The method should not be overridden as it
is implemented by the container.

6. B. A method must be defined within a declaration, not a scriptlet. All
other code types are legal within a scriptlet.

7. D. There are four packages that do not need to be imported in a JSP
page, because they are implicitly imported. They include java.lang.*,
javax.servlet.*, javax.servlet.jsp.*, and javax.servlet
.http.*.

8. A. A session attribute defaults to a true value, suggesting a client
must join an HTTP session in order to use the JSP page. The buffer
attribute defines the size of the out object, while isThreadSafe and
isErrorPage default to false.

9. A. A forward slash defines the file as relative to the JSP application’s
document root directory and is resolved by the web server. Without
the slash, the file is considered relative to the current JSP page.

10. D. The first three tag prefixes are reserved by Sun Microsystems.
However, servletx is available.

http://www.sybex.com

Answers to Review Questions 353

11. C. An application scope means the bean is available to the entire
application. Because the servlet context applies to the entire applica-
tion, the instance is stored as an attribute to this object.

12. B. The beanName attribute used within the jsp:useBean element
instantiates a bean by using the passed-in bean name (assuming an
instance does not already exist).

13. D. The type and code are both required attributes of the jsp:plugin
element. The type must be marked as bean (remember, attributes are
case sensitive) and the code must include the .class extension. Finally,
if jreversion is not included, it defaults to the 1.2 version.

14. A. import is an attribute of the page directive, not a directive itself.

15. D. A page directive is used to define characteristics of the JSP page.
This includes whether the page will participate in sessions, or whether
the output buffer will automatically flush when it is full, or whether
multiple clients can make simultaneous requests because the page is
thread-safe. The majority of these options are defined with a true or
false value. The uri, however, is the address or Uniform Resource
Identifier for the tag library descriptor in a taglib descriptive.

http://www.sybex.com

Chapter

10

Using Custom Tags

THE FOLLOWING SUN CERTIFIED WEB
COMPONENT DEVELOPER FOR J2EE
PLATFORM EXAM OBJECTIVES COVERED
IN THIS CHAPTER:

�

11.1 Identify properly formatted tag library declarations in the

web application deployment descriptor.

�

11.2 Identify properly formatted

taglib

 directives in a JSP page.

�

11.3 Given a custom tag library, identify properly formatted

custom tag usage in a JSP page. Uses include:

�

An empty custom tag
�

A custom tag with attributes
�

A custom tag that surrounds other JSP code
�

Nested custom tags

�

12.1 Identify the tag library descriptor element names that

declare the following:

�

The name of the tag
�

The class of the tag handler
�

The type of content that the tag accepts
�

Any attributes of the tag

�

12.2 Identify the tag library descriptor element names that

declare the following:

�

The name of a tag attribute
�

Whether a tag attribute is required
�

Whether or not the attribute’s value can be dynamically
specified

http://www.sybex.com

�

12.3 Given a custom tag, identify the necessary value for

the

body-content

 TLD element for any of the following

tag types:

�

Empty tag
�

Custom tag that surrounds other JSP code
�

Custom tag that surrounds content that is used only
by the tag handler

�

12.4 Given a tag event method (

doStartTag

,

doAfterBody

,

and

doEndTag

), identify the correct description of the

method’s trigger.

�

12.5 Identify valid return values for the following

methods:

�

doStartTag

�

doAfterBody

�

doEndTag

�

PageContext.getOut

�

12.6 Given a “BODY” or “PAGE” constant, identify a

correct description of the constant’s use in the following

methods:

�

doStartTag

�

doAfterBody

�

doEndTag

�

12.7 Identify the method in the custom tag handler that

accesses:

�

A given JSP page’s implicit variable
�

The JSP page’s attributes

�

12.8 Identify methods that return an outer tag handler

from within an inner tag handler.

http://www.sybex.com

I

n the preceding chapter, we succeeded in separating the Presenta-
tion layer from the Business Logic layer through the use of JSPs. We showed
how actions provide limited functionality to enable the JSP to perform cer-
tain tasks, while scriptlets handle everything else. A JSP page made up of
these components is useful, but it does not provide a solution that enables
you to completely exclude all Java code from the JSP page. For example,
what if you wanted the JSP page to generate a table on the fly? This could be
done with HTML, but the ability to highlight a row or change the content to
another language is limited. Scriptlet or servlet code would be required.

Inevitably, the lack of functionality available in the standard JSP actions
results in the developer having to write Java code in two ways: either embed
a plethora of scriptlet code within the page or create a servlet to handle the
functionality. The first option is not optimal because scriptlet code makes a
page difficult to read, maintain, and expand. The second option is feasible,
but requires the developer to provide an

include

 or

forward

 action every
time a custom behavior is needed. Each attribute name must be known in
order to set its value; in addition, each attribute must be listed in a separate

jsp:param

 tag. Again, this approach works, but means that any complex
graphical functionality must be handled within a servlet rather than a JSP.
Ideally, all presentation-related logic should be handled by the JSP. This
chapter discusses how to expand the current JSP library by enabling devel-
opers to create custom JSP actions.

The use of

custom tags

 (also known as

custom actions

 or

tag extensions

)
helps provide a clear division of labor between the web page designer and the
software developer. Similar to XML, a custom tag takes the place of script-
lets, and sometimes beans, to provide the web designer the functionality to
accomplish a particular task. Instead of doing the following:

The random number assigned to you is:

 <%= (int)Math.random()*100 %>

The designer could use a tag to accomplish the task:

The random number assigned to you is: <custTag:randomValue/>

http://www.sybex.com

358

Chapter 10 �

Using Custom Tags

Designing the page becomes a matter of plugging in the appropriate tags
to achieve the correct design. The developer, on the other hand, creates tag
classes to accomplish generic tasks. In fact, custom tags can take the place of
servlets to provide an all-JSP Presentation tier. Each task can be customized
via attributes passed from the calling page at runtime. The tag has access to
all objects available to the JSP page, such as

request

,

response

, and

out

.
In addition to being nested, custom tags can also communicate with one
another. They allow for complex behavior while ultimately simplifying the
readability and maintainability of the JSP page.

A Basic Custom Tag

F

our components are required to ensure that a custom tag action per-
forms correctly:

MyTagName.class

 is the custom action class you write to define the
tag’s functionality.

taglibName.tld

 is an XML file that defines a tag library.

web.xml is an XML file that contains tag libraries available to the
application.

MyJspPage.jsp is a JSP page that utilizes tags defined in the associated
web.xml document.

A custom tag’s body or functionality must exist in a special class that
ultimately implements the Tag interface. This interface defines the life-cycle
methods of the tag, enabling developers to include appropriate logic where
necessary.

To simplify implementation, the API also provides a support class called
BodyTagSupport. This class reduces the number of methods the developer
must define. We will talk about the interfaces and supporting classes in
greater detail as the chapter progresses. Listing 10.1 is a code example of a
basic tag, which generates a random value.

Listing 10.1: A Basic Custom JSP Tag

package tagext;

import java.io.*;

http://www.sybex.com

A Basic Custom Tag 359

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

public class RandomValue extends BodyTagSupport {

 public int doStartTag() throws JspException {

 return SKIP_BODY;

 }

 public int doEndTag() throws JspException {

 int value = (int)(Math.random()* 100);

 try {

 pageContext.getOut().write(value);

 } catch (IOException e) {

 throw new JspException(e.getMessage());

 }

 return EVAL_PAGE;

 }

}

On a simple level, the two methods defined contain the behavior of the tag.
The doStartTag() is called to process the start, or opening, tag of the
instance. Depending on the constant returned, the body that lies between
the opening and closing tag will be either executed or ignored. Although
this method is not necessary in this example, because it performs default
behavior, it is included to help you understand what is being called. Next,
the doEndTag() method is invoked. In this example, a random value is gen-
erated and written to the tag’s output stream. When compiled, the custom
JSP class file should be placed within the application context’s /WEB-INF
/classes directory.

The next step is to create a tag library descriptor (TLD) file. A TLD is an
XML document that describes a tag library. It contains one or many related
custom tag extensions. For this example, our TLD file tagext.tld might
look like the following:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib PUBLIC

 "-//Sun Microsystems,Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>

http://www.sybex.com

360 Chapter 10 � Using Custom Tags

 <tlib-version>1.0</tlib-version>

 <jsp-version>1.2</jsp-version>

 <short-name>demo</short-name>

 <description>Simple demo library.</description>

 <tag>

 <name>randomValue</name>

 <tag-class>tagext.RandomValue</tag-class>

 <body-content>empty</body-content>

 <description>First example</description>

 </tag>

 …

</taglib>

Each custom tag is embedded within its own set of <tag></tag> ele-
ments. Name and content information is included to enable other JSPs to
identify and use a particular tag. We will discuss each tag in detail later.

For now, we will map our tagext.tld file to the application via the
web.xml document. The following elements must be included within the
deployment descriptor to allow all JSPs to utilize the defined custom tags:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems,Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<!-- Tag Library Descriptor -->

<taglib>

 <taglib-uri>http://www.acme/tagext</taglib-uri>

 <taglib-location>

 /WEB-INF/classes/tagext.tld

 </taglib-location>

</taglib>

…

</web-app>

The taglib element encapsulates information for the container to locate
the library file. Once accessible, all JSPs within the application, including

http://www.sybex.com

A Basic Custom Tag

361

MyJspPage.jsp

, can utilize each

taglib

 or custom tag in the following
fashion:

<%@ taglib uri=“http://www.acme/tagext” prefix=“custTag” %>

<HTML>

 <HEAD><TITLE>Your lucky number</TITLE></HEAD>

 <BODY>The random number assigned to you is:

<custTag:randomValue />

 </BODY>

 </HEAD>

</HTML>

The JSP defines the tag element, which maps to the

web.xml

 file, which
maps to the

tagext.tld

, which maps to the specialized tag class. Figure 10.1
demonstrates the path taken.

F I G U R E 1 0 . 1

Custom tag mapping

Each of these files would be located in the following directory structure:

MyJspPage.jsp

META-INF/

 MANIFEST.MF

WEB-INF/

 web.xml

 classes/

 tagext/

RandomValue.class

 tagext.tld

notice.jsp

<custTag:randomValue/>

RandomValue.class

doStartTag()…

web.xml

<taglib-location>
 /WEB-INF/classes/tagext.tld
</taglib-location>

tagext.tld

<name>
 randomValue
</name>
<tagclass>
 tagext.RandomValue
</tagclass>

http://www.sybex.com

362 Chapter 10 � Using Custom Tags

Notice that the custom tag RandomValue is a .class file rather than a
.jsp file. The remainder of this chapter will focus on the details associated
with each of these components. In this section, we will address the nuances
used to customize and add additional functionality to a custom tag:

� Defining a tag

� Using the taglib element

Defining a Tag

A custom tag, or tag extension, is similar in structure to a standard JSP action
tag. It is made up of four parts: a name, attributes, nested tags, and a body:

Tag name This is a name that uniquely identifies the element. It consists
of two parts: a prefix and suffix. The prefix is a predefined name that links
the action to a tag library. The suffix is the name of the element used to
invoke the action. The prefix and suffix are separated by a colon.

Attributes These help define the characteristics necessary for the element
to perform its task. For example, class is an attribute for jsp:useBean
that defines the class name used to instantiate the bean. An element can
have as many or as few attributes as necessary. Attributes are optional.

Nested tags A tag can contain subtags that provide further functionality,
helping the outer tag complete its task. The subtags jsp:setAttribute or
jsp:getAttribute enable the jsp:useBean action to change and access
its attribute values. Nested tags are observed and executed at runtime.

Body The content between the opening tag and closing tag, including
subtags, is considered the body content . A tag extension can control the
body content by extracting it from the element’s class file and returning a
changed value.

Syntactically, a tag extension can look like the following:

<prefix:suffix attribute1=“value” attribute2=“value”…>

 <prefix:subSuffix attribute1=“value” attribute2=“value”… />

 body

</prefix:suffix>

Each suffix represents a different JSP tag name associated with a tag class
file. A JSP page can call any tag defined within the application’s deployment
descriptor, as long as the tag has been specified by the JSP taglib directive.

http://www.sybex.com

A Basic Custom Tag 363

Using the taglib Element

Before a tag extension can be used within a JSP page, three things must happen:

1. The JSP page must include a taglib element to identify which tag
libraries to load into memory.

2. The web.xml document must use a taglib element to identify the
location of the TLD file.

3. The TLD file must use the taglib element to identify each custom tag
and its attributes.

The JSP Page

You are required to use the taglib directive within the JSP page to identify
the use of custom tags. Because the tag contains the necessary information to
load the appropriate TLD, it must be defined before any custom tag is used.
Once loaded, the TLD, or tag library, provides the current JSP with addi-
tional names and attributes of available custom actions.

Locating the correct tag library requires the inclusion of two mandatory
attributes along with the taglib directive: uri and prefix. The syntax is as
follows:

<%@ taglib uri=“locationOfTLD” prefix=“shortName” %>

You can use the uri attribute in two ways. First, you can map it directly
to the uri attribute used within the web.xml’s taglib sub-element, called
taglib-uri. When these two values match, the other sub-element within
the web.xml file, called taglib-location, will define the absolute location
of the file. The second option is for the uri attribute to provide the absolute
path to the TLD. At that point, the web.xml file does not need to provide
location information. The container will use the information from the JSP
page to map to the TLD via the deployment descriptor. Both options are pro-
vided to enable the developer to conveniently define the location of the TLD
file or to use more abstract measures that grant greater long-term flexibility.

The prefix attribute is also mandatory and defines the prefix name in the
tag extension. For example, if prefix=“eei”, then the tag for an element
called calculate would look like <eei:calculate />. The actual value
assigned to the prefix attribute is an arbitrary name defined by the HTML
designer to enable the JSP container to map the tag to the real tag library. In
addition to defining the first portion of a tag extension, the prefix also maps
to the shortname element defined within the TLD. When the container

http://www.sybex.com

364

Chapter 10 �

Using Custom Tags

encounters the

taglib

 directive, it knows to download the library identified
by the

uri

. When it encounters an element with a defined prefix, it then
knows which library to search—to efficiently locate the identified tag. This
process is known as

prefix mapping

.

The Deployment Descriptor

The

web.xml

 file is the mapping tool used between the JSP page and all other
available container resources. The JSP uses the DTD to locate the TLD. When
a JSP attempts to invoke a custom tag, the tag must first be located, and then
processed. By modifying the deployment descriptor to include mapping infor-
mation to the tag library, the JSP can locate the necessary actions to invoke.

A tag library is defined within the DTD by using the opening

<taglib>

and closing

</taglib>

 tags. Embedded within, the URI and exact directory
location are defined by using both the

taglib-uri

 and

taglib-location

tags, respectively. The following code snippet demonstrates how to include
two libraries within the application’s

web.xml

 file:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems,Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 …

 <!-- Tag Library Descriptor -->

 <taglib>

 <taglib-uri>/taglib1</taglib-uri>

 <taglib-location>

 /WEB-INF/tlds/GeneralTagLib.tld

 </taglib-location>

 </taglib>

 <taglib>

 <taglib-uri>http://www.eei.com/taglib2</taglib-uri>

 <taglib-location>

 /WEB-INF/tlds/SpecificTagLib.tld

 </taglib-location>

http://www.sybex.com

A Basic Custom Tag 365

 </taglib>

 …

</web-app>

First, it is important to notice the web.xml DOCTYPE is web-app. Later,
when we provide a closer look at the TLD file, you will see that the DOCTYPE
is defined as taglib. In addition, the actual DTD file (web-app_2.3.dtd)
used to define the web.xml file is different from that used to define TLD files.

The taglib element has two sub-elements. The first sub-element is
taglib-uri. It specifies the URI that all JSPs should use to access that tag
library. Its path can contain either an absolute path, which includes host and
port number, or a relative path using published directories. The mapping
between the URI and the actual destination of the TLD is done by using the
second sub-element, called taglib-location. This element is used to define
the exact location of the TLD file. Unlike the URI, it can contain nonpub-
lished directories such as /WEB-INF and its subdirectories.

When defining paths, it is important to know the difference between the
three formats:

Context-relative path If the path starts with a forward slash (/), then
the path is relative to the application’s context path.

Page-relative path If the path does not start with a slash, then it is rela-
tive to the current JSP page or file. If the include directive is used, which
incorporates the response of the identified file attribute, then the URI is
relative to that defined file. If the include action is used, then the URI
is relative to the page attribute’s value.

Absolute path This is the full path, starting with the protocol and host,
necessary to locate the tag library file.

There should not be more than one taglib-uri entry with the same value in
a single web.xml file.

Generally, the taglib-location element is mapped to a context-relative
path, which begins with a forward slash (/), and does not include a protocol
or host definition. Specifically, this path is referred to as the TLD resource
path. The TLD resource path is relative to the root of the web application
and should resolve to a TLD file directly, or to a JAR file that has a TLD file
located in the /WEB-INF directory.

http://www.sybex.com

366 Chapter 10 � Using Custom Tags

The following is an example of how the mapping applies.

DTD file:

<taglib>

 <taglib-uri>/tagDir</taglib-uri>

 <taglib-location>

 /WEB-INF/tld/taglib.tld

 </taglib-location>

</taglib>

Maps to the JSP file taglib directive:

<%@ taglib uri=“/tagDir” prefix=“eei” %>

Both URIs map to each other, while the location identifies where the
taglib.tld file resides. After the library is located, the container will load
it into memory and examine its contents.

Tag Library Descriptor (TLD)

As you know, the tag library descriptor, or TLD, is an XML document used
to identify and describe the list of custom tag extensions associated with a
single tag library. The file contains general information about the library,
and available extensions, along with their attributes. Listing 10.2 displays a
library containing two tags.

Listing 10.2: A Sample TLD

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib PUBLIC

 "-//Sun Microsystems,Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>1.2</jsp-version>

 <short-name>examples</short-name>

 <description>Simple example library.</description>

http://www.sybex.com

A Basic Custom Tag 367

 <tag>

 <name>hello</name>

 <tag-class>tagext.HelloTag</tag-class>

 <body-content>JSP</body-content>

 <description>First example</description>

 </tag>

 <tag>

 <name>goodbye</name>

 <tagclass>tagext.GoodByeTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>Second example</info>

 <attribute>

 <name>age</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 <type>java.lang.Integer</type>

 </attribute>

 </tag>

</taglib>

The TLD begins with general information about the library. Table 10.1
lists the various tags that can be used to describe the library. The only two
required are jsp-version and short-name.

T A B L E 1 0 . 1 General TLD Tags

Tag Explanation

tlib-version The library’s version number.

jsp-version The JSP specification version required by the current
tag library to function properly. This tag is mandatory.

short-name The prefix value of the taglib directive. You should
not use white space, or start the value off with a digit
or underscore. This tag is mandatory.

description A text string describing the library’s purpose.

http://www.sybex.com

368 Chapter 10 � Using Custom Tags

Optional tags for the library are available to provide additional flexibility
and functionality. Table 10.2 displays these elements.

After the broad library information is defined, custom tags can be
declared by using the <tag></tag> elements. Configuration information for
the specific action is embedded between these tags. Table 10.3 lists the basic
tag options.

T A B L E 1 0 . 2 Optional TLD Tags

Tag Explanation

uri An address that uniquely identifies this taglib.

display-name The short name for the tag displayed by tools.

small-icon An optional icon that can be used by tools to identify
the tag library.

large-icon An optional icon that can be used by tools to identify
the tag library.

description An arbitrary string used to describe the tag library.

validator An object used to ensure the conformance of the JSP
page to the tag library. It can contain the following
sub-elements:

validator-class—The class that implements the
javax.servlet.jsp.tagext.TagLibraryValidator
interface

init-param—The optional initialization parameters

description—The explanation of the validator

listener A tag that defines an optional event listener object to
instantiate and register automatically. It can contain
the following sub-element:

listenerclass—The class that must be registered as
a web application listener bean

http://www.sybex.com

A Basic Custom Tag 369

T A B L E 1 0 . 3 Common Custom Tag Options

Tag Explanation

name The unique action name. The name defined after the prefix.

tag-class The fully qualified class name for the custom action that
implements the javax.servlet.jsp.tagext.Tag interface.

tei-class This stands for the TagExtraInfo class. It provides informa-
tion about the values exported to the corresponding tag
class. This class must subclass the javax.servlet
.jsp.tagext.TagExtraInfo interface. This tag is optional.

body-content Information used by a page composition tool to determine
how to manage the tag’s body content. The following
options are available:

JSP—A value that informs the container to evaluate the body
of the action during runtime. This is the default.

tagdependent—A value notifying the container that it should
not evaluate the body of the action. Instead, its contents
should be passed to the tag handler for interpretation.

empty—A value stating that the body must be empty.

attribute The tag used to provide information about all available
parameters and values exported by the tag. Its sub-
elements are as follows:

name—The name of the attribute. This is required.

required—A value that indicates whether the attribute is
mandatory or optional. This sub-element is optional.

rtexprvalue—A value that indicates whether the attribute
can be dynamically calculated by using an expression. This
sub-element is optional. Options include:
 true | false | yes | no
The default is false. If true, then the tag might look some-
thing like the following:

 <prefix:action attrib=”<%=obj.getValue() %>”

type—The attribute’s data type. For literals, the type is
always java.lang.String.

description—The explanation of the attribute.

http://www.sybex.com

370 Chapter 10 � Using Custom Tags

In addition to the standard tags that define the element, supplementary
elements can be included to enhance the use of the extension within a tool or
to improve readability. Table 10.4 lists these additional tags.

A custom tag has a variety of elements to help define the tag’s syntax and
how it should be used. Some of the elements are basic requirements for the

T A B L E 1 0 . 4 Additional Custom Tag Elements

Tag Explanation

display-name The short name displayed by tools.

small-icon A file containing a small (16 × 16) icon image. Its
path is relative to the TLD. The format must be
either JPEG or GIF.

large-icon A file containing a large (32 × 32) icon image. Its
path is relative to the TLD. The format must be
either JPEG or GIF.

description An explanation of the tag.

variable An element that provides information about the
scripting variables. Its sub-elements are as follows:

name-given—The name as a constant.

name-from-attribute—The name of the attribute
whose value will be given the name of the vari-
able at translation time.

variable-class—The variable’s class name. The
default is java.lang.String.

declare—A Boolean representing whether the
variable is declared. The default is true. Available
options are true | false | yes | no.

scope—The scope of the scripting variable.
NESTING is the default. The other legal values are
AT BEGIN and AT END.

description—An explanation of the variable.

example A sample of how to use the tag.

http://www.sybex.com

A Basic Custom Tag 371

tag, whereas others are optional elements that make the tag more tool-
friendly by adding robust features.

After a tag is defined, it can then be configured to perform its task by using
the information and attributes provided. Let’s begin by revisiting the second
tag in code Listing 10.2:

<tag>

 <name>goodbye</name>

 <tag-class>tagext.GoodByeTag</tag-class>

 <body-content>JSP</body-content>

 <description>Second example</description>

 <attribute>

 <name>age</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 <type>java.lang.Integer</type>

 </attribute>

</tag>

We could invoke this tag within our JSP page in the following
fashion:

<examples:goodbye age=

 ”<%=

 new Integer(application.getInitParameter(“age”))

 %>” >

</examples:goodbye>

This example provides one attribute called age. It is required and enables
the value to be assigned at runtime by using an expression. Because its return
type is of the java.lang.Integer class, the expression must convert the
String value to an Integer object.

Talking to the World

For several years, WorldTalk Inc. has provided the Internet community a
service that translates websites to the clients’ desired language. To ensure
that their teams of designers are specialized experts in design and that their
teams of developers are experts in programming, the company has begun to
separate worker tasks.

http://www.sybex.com

372 Chapter 10 � Using Custom Tags

The final piece needed to bring custom extensions together is the actual
tag class. In the next section, we will discuss the various types of custom tags
and their life cycles.

Tag Handler

As with all Java advanced technologies, creating a component that
conforms to a particular API requires the implementation of an interface.
Custom tags abide by this rule. When you are creating a custom tag, it
is required that the class implement the interface javax.servlet.jsp
.tagext.Tag. The interface provides several important methods that
define the life cycle of the tag. By implementing the methods correctly,
the container can manage the tag to deliver an expected and consistent
behavior.

The Tag interface is the most basic protocol between the Tag handler and
the implementing JSP page. It defines the methods that should be invoked
at the starting and ending tag. The interface javax.servlet.jsp.tagext
.IterationTag is a subinterface and provides additional functionality

Standard JSPs have greatly helped the company move toward this goal,
because the JSPs enable designers to focus on HTML and use available
tags to take care of basic functionality. The problem with this approach is
that designers are forced to create complex HTML code that is not reus-
able because they are using JSP and have limited default programming
functionality.

To solve this problem, management chose to migrate the application
toward the use of custom tags. The development team began working on a
library of tags that provide translation functionality. For example, designers
can now use a tag called formatDate.jsp to present the date in the appro-
priate fashion. Optional attributes include the locale of the machine, the
pattern describing the date style, the value being the actual date, and
others. By creating a library of tags, the developers have enabled the
designers to create pages by utilizing tags that handle all the functionality
necessary to create the item or result desired. The developers handle
Unicode translations, and the designers focus on layout.

http://www.sybex.com

Tag Handler

373

whereby the tag can loop through its body multiple times. Still one level
lower is the

javax.servlet.jsp.tagext.BodyTag

 interface, which allows
the manipulation of the body content. By implementing any one of these
interfaces and a little work, you can create a custom tag that suits your needs.

To minimize the work, the API provides support classes, which imple-
ment the interfaces for you. They define the most uncommonly changed
methods and leave the most frequently modified methods abstract. Figure 10.2
demonstrates the hierarchy between the interfaces and support classes
discussed. The solid lines represent “

extends

,” and the dotted lines signify
“

implements

.”

F I G U R E 1 0 . 2

The tag hierarchy

A custom tag can extend any one of the interfaces or simply extend a sup-
port class. This section covers the functionality of each tag interface and
abstract class:

�

Tag

 interface

�

IterationTag

 interface

�

BodyTag

 interface

�

Support classes

Deciding which class or interface to utilize is usually based on the life cycle
desired and required methods the developer must define. We will discuss
these features in detail.

BodyTagSupport

BodyTagTagSupport

IterationTag

Tag

CustomTagCustomTag

http://www.sybex.com

374 Chapter 10 � Using Custom Tags

Tag Interface

As mentioned earlier, the javax.servlet.jsp.tagext.Tag interface
defines the most basic protocol between the tag handler and the JSP page
that invokes the instance. If you choose to implement this interface, you must
define the following six methods:

� setPageContext(PageContext pageContext)

� setParent(Tag tag)

� getParent()

� doStartTag()

� doEndTag()

� release()

The first method that is invoked by the container sets the pageContext
object, which provides a handle to all the implicit objects. Its signature is as
follows:

public void setPageContext (PageContext pageContext)

The container passes the context to the tag to enable access to the appli-
cation’s implicit variables. Through the PageContext convenience methods,
such as getRequest(), you can alter or provide more information to your
tag handler. This method is usually defined by saving a local instance of the
context object.

The second method that is invoked by the container is setParent(Tag
tag). Its purpose is to provide a local handle to the closest enclosing tag
handler. If a tag is nested within another tag, the handle to the outer tag is
made available to the inner tag. Given the existence of the corresponding
getParent() method, tags can communicate with one another by using the
Tag handle instance. The signature to these methods is as follows:

public void setParent(Tag tag)

public Tag getParent()

After the setPageContext(…) and setParent(…) methods are called,
the container can begin to process the beginning tag by first invoking any
“set” property methods to set needed tag attributes. For example, if the tag
has a String attribute called name, then a corresponding setName(…)
method within the tag handler will automatically be invoked. The container
will then continue to initialize the tag by calling doStartTag(). In addition
to initializing the tag even further, this method is responsible for notifying

http://www.sybex.com

Tag Handler 375

the container about how to evaluate the body of the tag element. The body
represents the logic between the opening and closing tags. The method
signature is as follows:

public int doStartTag() throws JspException

Depending on how you would like the body to be handled, you can return
one of the following constants:

int EVAL_BODY_INCLUDE This constant indicates that the body should
be evaluated. Results generated from executing the body are written to the
current JspWriter out variable.

int SKIP_BODY This constant indicates that the body should not be
evaluated.

Depending on the return value, the body will be either evaluated or
skipped. The doEndTag() method is then invoked. It processes the end tag
for the element to determine how the remaining JSP page should be evalu-
ated. The signature for the method is as follows:

public int doEndTag() throws JspException

As you can see, this method returns an int value as well. Again, the
constant informs the container about how to proceed. The following return
values are available:

int EVAL_PAGE As the name suggests, this constant indicates that the
container should evaluate the rest of the JSP page.

int SKIP_PAGE This option indicates that the rest of the page should
not be evaluated and that the request is in fact complete. If this request
was created by a forward or include from another page, then only the
current JSP page is complete.

The specification states that if the TLD defines the action’s body-content
as empty, then the doStartTag() method must return SKIP_BODY.

If SKIP_BODY is returned and a body is present, it is not evaluated.

Both the doStartTag() and doEndTag() methods throw a JspException
in their signatures. If the method actually throws the exception, the con-
tainer will generate an error page to notify the client of a JSP problem.

http://www.sybex.com

376

Chapter 10 �

Using Custom Tags

The final method that must be defined is used to clean up any loose ends.
The signature is as follows:

public void release()

When the tag is done processing the beginning element, the body, and the
ending element, the container invokes this method to release the tag han-
dler’s state. Figure 10.3 displays the life cycle for the

Tag

 interface.

F I G U R E 1 0 . 3

The

Tag

 interface life cycle

Let’s revisit the custom tag example used to generate a random value. Pre-
viously, we showed you how we invoked such an action; now we will show
you the actual code used to generate the action. Listing 10.3 displays the
necessary code to implement the

Tag

 interface.

Listing 10.3: Utilizing the Tag Interface

package tagext;

import java.io.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

setPageContext(PageContext pc)

setParent(Tag)

//setAttributes()

doStartTag()

//Body

doEndTag()

release()

http://www.sybex.com

Tag Handler 377

public class RandomValue implements Tag {

 private PageContext pageContext;

 private Tag parent;

 public int doStartTag() throws JspException {

 return SKIP_BODY;

 }

 public int doEndTag() throws JspException {

 int value = (int)(Math.random() * 100);

 try {

 pageContext.getOut().write("" + value);

 } catch (IOException ioe) {

 throw new JspException(ioe.getMessage());

 }

 return EVAL_PAGE;

 }

 public void release() {}

 public void setPageContext(PageContext pageContext) {

 this.pageContext = pageContext;

 }

 public void setParent(Tag parent) {

 this.parent = parent;

 }

 public Tag getParent() {

 return this.parent;

 }

}

In this example, the doStartTag() method notifies the container to skip
the body and immediately invoke doEndTag(). This method generates a
random value and writes it to the JspWriter out object. When the method
completes, the rest of the JSP page will be evaluated. One thing you should
notice is that within a custom action, you do not have direct access to

http://www.sybex.com

378 Chapter 10 � Using Custom Tags

implicit objects. Instead, handles to these variables are accessible from
the pageContext object passed as an instance by the container. In the
preceding example, the implicit out JspWriter is accessed by calling
pageContext.getOut().

The PageContext class provides the following convenience methods for
access to implicit objects: getOut(), getException(), getPage(),
getRequest(), getResponse(), getSession(), getServletConfig(), and
getServletContext().

IterationTag Interface

The javax.servlet.jsp.tagext.IterationTag interface extends the
Tag interface and adds one additional method. As the name suggests, this
interface enables the body of the element to be executed multiple times. The
functionality is similar to a do/while loop.

In addition to the standard doStartTag() and doEndTag() methods,
the IterationTag interface adds the doAfterBody() method. When this
method is implemented, the developer can opt to have the body evaluated
again. The signature is as follows:

public int doAfterBody() throws JspException

Depending on how you would like the body to be handled, you can return
one of the following constants:

int EVAL_BODY_AGAIN This indicates that the body should be reevalu-
ated. The doAfterBody() method will get called again after evaluating
the body.

int SKIP_BODY This notifies the container that the body should not be
evaluated. The value of out will be restored, and the doEndTag() method
will be invoked.

If SKIP_BODY is returned, the body is not evaluated and the doEndTag() is then
invoked.

As we said, this interface acts like a do/while loop. It enables the body to
be evaluated (that’s the do part), and calls doAfterBody() (that’s the while

http://www.sybex.com

Tag Handler

379

part) to determine whether to reevaluate the body. Figure 10.4 displays the
life cycle of an

IterationTag

.

F I G U R E 1 0 . 4

The

IterationTag

 life cycle

Although this interface is not often used directly, it can be utilized to cycle
through an element’s body to generate a response. Listing 10.4 takes our pre-
vious JSP, which generated a single random value, and now has it generate
five random values.

Listing 10.4: Utilizing the IterationTag Interface

package tagext;

import java.io.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

public class MoreRandomValues implements IterationTag {

 private PageContext pageContext;

setPageContext(PageContext pc)

setParent(Tag)

//setAttributes()

doStartTag()

//Body

doAfterBody()

doEndTag()

release()

http://www.sybex.com

380 Chapter 10 � Using Custom Tags

 private Tag parent;

 private int counter;

 public void setPageContext(PageContext pageContext) {

 this.pageContext = pageContext;

 }

 public void setParent(Tag parent) {

 this.parent = parent;

 }

 public int doStartTag() throws JspException {

 return EVAL_BODY_INCLUDE;

 }

 public int doAfterBody() throws JspException {

 int value = (int)(Math.random() * 100);

 counter++;

 if (0 < counter && counter<5) {

 try {

 pageContext.getOut().write(" " + value);

 } catch (IOException ioe) {

 throw new JspException(ioe.getMessage());

 }

 return EVAL_BODY_AGAIN;

 } else {

 return SKIP_BODY;

 }

 }

 public int doEndTag() throws JspException {

 return EVAL_PAGE;

 }

 public void release() {

 counter=0;

 }

http://www.sybex.com

Tag Handler 381

 public Tag getParent() {

 return this.parent;

 }

}

In this example, the doAfterBody() method generates a new random value
if the body has been evaluated fewer than five times. It then takes that
value and writes it to the JspWriter object. Because we are simply writing
text to the response stream, we access the implicit out variable through the
pageContext object and invoke the write(…) method, which takes a String
value. The resulting output displays four consecutive random values.

You will not see the IterationTag interface implemented often because
its subinterface, javax.servlet.jsp.tagext.BodyTag, offers the ability
to iterate and manipulate the body content if necessary. If iterating through
the body is not necessary, a support class implements all the necessary
methods of this interface and makes coding a tag much easier. We will cover
that topic later, in “Support Classes.” For now, let’s take a close look at the
BodyTag interface.

BodyTag Interface

The javax.servlet.jsp.tagext.BodyTag interface extends the
IterationTag interface and adds the capability to evaluate and alter the
body content multiple times. As you know, the body content is the logic
between an extension’s opening and closing tags. This functionality is made
possible with the addition of the following methods:

� public void setBodyContent(BodyContent bodyContent)

� public void doInitBody() throws JspException

The setBodyContent(BodyContent bodyContent) method is called by
the container to provide the tag a handle to the body content. It is invoked
after the doStartTag() because the opening tag must first be evaluated to
determine whether to execute or skip the body. The bodyContent object is
a critical feature for BodyTag handlers. It is important to understand how
this object works in order to get your output to display correctly.

With basic JSPs, output is written to the response stream by using the
JspWriter out implicit variable. Until now, we too have written directly
to the out variable by using the pageContext method getOut(). This
approach works well when you need to write either a String, int, or char

http://www.sybex.com

382 Chapter 10 � Using Custom Tags

value to the stream. However, when the goal is to manipulate a tag’s body
content and then write its information to the response stream, the standard
out object falls short. To accomplish this task, you must first write to the tag’s
bodyContent object. The class actually extends the JspWriter class, and
is therefore a buffered writer. But what distinguishes it from its parent class is
that it contains the tag’s evaluated body content. From the bodyContent
object, you can extract the body and manipulate its content. When you are
ready to display your results, the bodyContent object must be written to the
implicit out response stream. To understand how the container handles
the body content, look at the following JSP code:

<syb:grandparent>

 This is the body

</syb:grandparent>

When the container reads the syb:grandparent tag, it executes the
tag’s doStartTag() method. This method creates a new bodyContent
writer instance specifically for this tag. The implicit out variable is then
redirected to the instance for future use. When the body is evaluated,
the contents are transferred to the bodyContent object. After a body
content instance is initialized, you can invoke any one of the following
methods on it:

� public void clearBody()

� public abstract String getString()

� public abstract Reader getReader()

� public JspWriter getEnclosingWriter()

� public abstract void writeOut(Writer out)

As you can see, you can clear the body, read from it, or call getString()
to convert the contents to a String and return its value. The last two methods
are important, because they are used to alter the content.

When you specifically write to the bodyContent instance, you are not
writing to the implicit out located on the bottom of the stack. Instead, you
must access the outer-layer stream by calling getEnclosingWriter(). This
method returns a JspWriter, which is the implicit out variable if your tag
is an outer tag. The term outer tag means the custom action is not nested
within another action. If it is nested, then you write your body content to the
enclosing outer tag’s body content. The task of sending the current body

http://www.sybex.com

Tag Handler 383

content to the enclosing writer is handled by the writeOut(…) method. This
method writes the content of the calling bodyContent instance to the
Writer object parameter. The parameter you pass is usually the result
of a call to getEnclosingWriter().

The implicit out object can be accessed by most JSP actions by using the
method pageContext.getOut(). The problem with accessing the out object
directly is that custom tags need to access their body content and manipulate
that data before sending it back to the response stream. A basic JspWriter
does not offer such functionality. In addition, by writing directly to the
pageContext.getOut(), anything that is currently in the buffer can be poten-
tially overwritten.

The way data is written to the response stream is especially critical and
essential for handling tags that are nested. Nested tags are tags within
another tag. Consider the following JSP example, in which pc stands for the
pageContext object:

<syb:grandparent> <-- pc.pushBody() bodyContent 1 -->

 <syb:parent> <-- pc.pushBody() bodyContent 2 -->

 <syb:child> <-- pc.pushBody() bodyContent 3 -->

 </syb:child>

 </syb:parent>

</syb:grandparent>

The code consists of three nested tags. The child tag is within the parent
tag, and the parent tag is within the grandparent tag. The problem is that
there is only one implicit out variable to which all tags must eventually for-
ward their output. To prevent potential overwrites, each tag has its own
bodyContent object. When the container accesses the opening tag, it calls
the action’s doStartTag() method, which causes the pageContext to call
its pushBody() method. This method creates a new bodyContent object for
that particular tag. With each tag owning its own bodyContent or JspWriter,
your first instinct might be to have the tag write directly to its own
bodyContent object. That, however, fails to work. The implicit out is
located at the bottom of the stack, whereas each additional bodyContent
writer is stacked one on top of the other. If you opt to writeOut(…) to the
current bodyContent, then the output will not be sent to the implicit out

http://www.sybex.com

384 Chapter 10 � Using Custom Tags

stream. Instead, it will be sent to itself. The following code sample demon-
strates this concept:

JspWriter jspOut = getBodyContent();

bodyContent.writeOut(jspOut);

The method getBodyContent() is available within the BodyTagSupport class.
It returns the current body content instance. If you are implementing the
BodyTag interface, a handle to the body content should be saved locally when
the setBodyContent(BodyContent bodyContent) method is invoked by the
container. We will discuss the support class in more detail later.

This example writes the contents of the current bodyContent into the
current bodyContent writer jspOut. The implicit out variable is never
accessed, and the stream is left empty. Basically, this example accomplishes
nothing because it writes itself to itself.

When you call getEnclosingWriter(), you access the enclosing action’s
bodyContent object or JspWriter. If tags are nested, then each will call
getEnclosingWriter() and access their outer tag writer, concatenating
their information to the previous buffered data. Eventually, you’ll reach the
outermost layer and write the buffered stream to the response stream. The
correct way to write output is as follows:

JspWriter bcOut = bodyContent.getEnclosingWriter();

bodyContent.write(“…data… ”);

bodyContent.writeOut(bcOut);

If this code snippet is run as an outer tag, then bcOut is actually the
implicit JspWriter out variable. If the tag is executed as a nested tag, then
the bcOut variable is actually the outer tag’s bodyContent.

Given the earlier nested example, the child tag must call
getEnclosingWriter() to access the content of the parent; the parent tag
will then call getEnclosingWriter() to get the grandparent tag’s content
writer. Finally, the grandparent calls getEnclosingWriter() to gain
access to the implicit out object writer, which transfers information to the
response stream. Figure 10.5 shows how nested tags eventually access
the response stream in comparison to a single tag.

When a stack of writers exists, the getEnclosingWriter() method
ensures that you concatenate current data with the parent’s data to eventu-
ally output all data to the response stream.

http://www.sybex.com

Tag Handler

385

F I G U R E 1 0 . 5

Accessing the enclosing writer

The

bodyContent

 has a buffer size that is unbound and cannot be flushed. In
fact, the

flush()

 method is overridden to prevent the parent class

JspWriter

from attempting to

flush

 when this method is called.

Now that you have a better understanding of

bodyContent

, let’s get
back to the life cycle of the

BodyTag

 interface. As discussed earlier, the

doStartTag()

 method is called to determine whether the body should be
evaluated. If the answer is yes, then a

bodyContent

object is created and
associated with the tag by an invocation of the

setBodyContent(…)

method. After the content is set, there is opportunity to initialize any vari-
ables prior to reading the body. This is done when the

doInitTag()

 method
is called. Its purpose is to process code that should be taken care of before the
body of the

BodyTag

 is evaluated for the first time. The

doAfterBody()

method is called next to determine whether the body should be reevaluated.
After there is no longer a need to iterate through the body, the

doEndTag()

method is invoked. Finally, before the

Tag

 handler is sent to the garbage col-
lector, the

release()

 method is called to release any unnecessary resources.
Figure 10.6 demonstrates the life cycle for this interface.

getEnclosingWriter()

getEnclosingWriter()

getEnclosingWriter()

Nested tags

Response stream

getEnclosingWriter()

Single tag

Response stream

grandparent

parent

child

Writer
out

child

Writer
out

http://www.sybex.com

386

Chapter 10 �

Using Custom Tags

F I G U R E 1 0 . 6

The

BodyTag

 life cycle

To demonstrate how this interface is used, we are going to create a

LoopTag

 handler to print the body content to the client the number of times
specified by an attribute.

First, we need to define the tag in the tag library descriptor:

<tag>

 <name>loop</name>

 <tag-class>tagext.LoopTag</tag-class>

 <body-content>

JSP

</body-content>

 <attribute>

 <name>iterations</name>

 <required>true</required>

setPageContext(PageContext pc)

setParent(Tag)

//setAttributes()

doStartTag()

setBodyContent(BodyContent bc)

doInitBody()

//Body

doAfterBody()

doEndTag()

release()

http://www.sybex.com

Tag Handler 387

 <rtexprvalue>true</rtexprvalue>

 <type>java.lang.Integer</type>

 </attribute>

</tag>

Notice that we define the body-content with the default value JSP. This
tells the container to evaluate the body of the action at runtime. If you would
rather have the action determine whether to evaluate the body, you can
define the content type as tagdependent. Finally, to force the body to be
empty, simply define the content as empty.

With this tag in place, we can now make the following call within our
JSP page:

<examples:loop iterations=”2”>

 Test 1

 <examples:loop iterations=”2”>

 Test 2

 </examples:loop>

</examples:loop>

The code for the described tag is shown in Listing 10.5. You will notice
that the doStartTag() method has an option to return the constant EVAL_
BODY_BUFFERED. When the constant is returned, a bodyContent object is
created to capture the evaluated body.

If EVAL_BODY_INCLUDE is returned, the setBodyContent(...) and doInitBody()
methods are not invoked. Instead, the body is evaluated and “passed
through” to the current out. The doAfterBody() method then invoked the
number of necessary iterations, until finally the doEndTag() is invoked.”

Listing 10.5: Utilizing the BodyTag Interface

package tagext;

import java.io.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

public class LoopTag implements BodyTag {

 private PageContext pageContext;

 private BodyContent bodyContent;

http://www.sybex.com

388 Chapter 10 � Using Custom Tags

 private Tag parent;

 private int iterations;

 public void setPageContext(PageContext pageContext) {

 this.pageContext = pageContext;

 }

 public void setParent(Tag parent) {

 this.parent = parent;

 }

 public void setIterations(int iterations) {

 this.iterations = iterations;

 }

 public int doStartTag() throws JspException {

 if(iterations>0) {

 return EVAL_BODY_BUFFERED;

 } else {

 return SKIP_BODY;

 }

 }

 public void setBodyContent(BodyContent bodyContent) {

 this.bodyContent = bodyContent;

 }

 public void doInitBody() throws JspException {}

 public int doAfterBody() throws JspException {

 if(iterations > 0) {

 iterations--;

 return EVAL_BODY_AGAIN;

 } else {

 try {

 if(bodyContent != null) {

 JspWriter out=

 bodyContent.getEnclosingWriter();

http://www.sybex.com

Tag Handler 389

 bodyContent.writeOut(out);

 }

 } catch (IOException e) {

 throw new JspException();

 }

 return SKIP_BODY;

 }

 }

 public int doEndTag() throws JspException {

 return EVAL_PAGE;

 }

 public void release() {}

 public Tag getParent() {

 return this.parent;

 }

}

The point of this code is to determine whether the tag has a body. If it
does, then the doAfterTag() method extracts the contents and writes it out
to the bodyContent. The iteration counter is decremented and checked to
determine whether to repeat the behavior in the doAfterBody() method.

By the time a tag’s doEndTag() method is invoked, the container might have
already reused the body content instance. Consequently, you should not use
the bodyContent object in the doEndTag() method; instead, it should be han-
dled within the doAfterBody() method.

The bodyContent object is flushed when the highest-level parent object (sim-
ilar to the Object class) clears its buffer. The highest-level parent object would
be a tag that is not nested within any other tag. When that object calls
writeOut(…), the buffer is flushed.

Ultimately, the code example produces the following output:

Test 1

Test 2

http://www.sybex.com

390 Chapter 10 � Using Custom Tags

Test 2

Test 1

Test 2

Test 2

A common use for the IterationTag or BodyTag is to extract data from
a java.sql.ResultSet object returned from a database call. With each
iteration, the current record is extracted in some standard format, which is
defined within the body content.

Depending on the task at hand, you can implement any one of these
three interfaces. To simplify matters, however, a few support classes are
provided to limit the number of methods you have to define when creating
a custom tag.

Support Classes

To reduce the amount of redundant work and provide additional functionality,
support classes are made available. The API provides a variety of support
classes; we will cover three that most closely pertain to the exam objectives.

Two of the three classes implement the Tag interfaces and define the
methods for the developer. They include:

javax.servlet.jsp.tagext.TagSupport is used for basic tags that do not
manipulate the tag’s body.

javax.servlet.jsp.tagext.BodyTagSupport is used for tags that intend
to make changes to the tag’s body content. Although these classes
implement the methods of the interface, the most commonly used
methods are written with limited functionality. This encourages the
developer to override the intended method to define custom behav-
ior. In addition to making tag extensions easier to write, the classes
also provide a few supplementary methods to expand the tag’s
capabilities.

The third support class is used to provide additional information to
the tag:

javax.servlet.jsp.tagext.TagExtraInfo is provided by the tag library
author to describe additional translation-time information not
described in the TLD.

In this section, we will discuss these three classes as they are often used
when creating custom tags.

http://www.sybex.com

Tag Handler 391

The TagSupport Class

The javax.serlvet.jsp.tagext.TagSupport class implements the
IterationTag interface, granting it the standard Tag life-cycle. The class is
also able to iterate through the tag body multiple times, without making
changes to the body. This utility class is considered the base class , which
offers basic functionality for new tag handlers. Because all the life-cycle
methods are implemented, they have default return values that you should
know. Table 10.5 defines those defaults.

In addition to defining the standard interface methods, the TagSupport
class offers two instance variables and some convenience methods for greater
functionality. The variables are as follows:

protected String id is a value that can be assigned to the tag for future
reference.

protected PageContext pageContext provides the tag with access to
the JSP page implicit objects, such as the JspWriter object out, or the
HttpSession object, known as session.

Because the Tag interface method setPageContext(…) is now defined
for you, the pageContext variable must be accessible to the class. The id
variable is defined by using a method called setId(…) and indirectly acces-
sible by using the getId() method.

Another feature of the TagSupport class is its capability to maintain a col-
lection of values. A tag value is any java.lang.Object with an associated
String key. This concept is similar to a java.util.Map. You can set and get
the value of a tag by using the following TagSupport methods:

� public Object getValue(String key)

� public java.util.Enumeration getValues()

T A B L E 1 0 . 5 Default Return Values for TagSupport Tags

Method Default Return Value

doStartTag() SKIP_BODY

doAfterBody() SKIP_BODY

doEndTag() EVAL_PAGE

http://www.sybex.com

392 Chapter 10 � Using Custom Tags

� public void removeValue(String key)

� public void setValue(String key, Object o)

As with a java.util.Map, you set the value of the tag by passing a unique
key and the value itself. Internally, the TagSupport class maintains a
Collection of values that you can enumerate by using the getValue(…)
method. Because you can add values, you can also remove them by identify-
ing the object you intend to eliminate via its key.

In addition to the previous methods defined, one other convenience
method is available to this class. It is static and used to help tags coordinate
with one another. Its signature is as follows:

� public static final Tag findAncestorWithClass(Tag from,
java.lang.Class class)

Sometimes you might need the help of an outer tag to resolve a problem
with a current nested tag. You can get the handle to any parental tags
from within a tag by using either the getParent() method or by calling
findAncestorWithClass(…). The method getParent() returns only your
immediate parent. In contrast, the findAncestorWithClass(…) method
enables multiple-layer subtags to acquire a handle to any outer ancestral tag
class. This method takes two arguments. The first parameter is the Tag handle
from which you want the container to begin its search for the target class.
The second parameter is the target java.lang.Class whose Tag handle you
are requesting.

The findAncestorWithClass(…) method is used to return a handle to
an ancestor tag class that is nested. For example:

<outer-outer>

 <outer>

 <inner (makes ancestor request)>

 Body

 </inner>

 </outer>

</outer-outer>

It is related to nesting tags within the JSP page, not a parental hierarchy.
Consider the following code example:

public int doStartTag() throws JspException {

 Class className= com.company.TagName.class;

http://www.sybex.com

Tag Handler 393

 Tag ancestor = TagSupport.findAncestorWithClass(this,

 className);

 TagSupport ts = (TagSupport)ancestor;

 ServletRequest req = pageContext.getRequest();

 ts.setValue(“quantity”, req.getParameter(“qty”));

 return SKIP_BODY;

}

Imagine that the example’s doStartTag() method exists within a
tag that is nested within several other tags. The com.company.TagName
.class is a great-great-great grandparent class. Given such a scenario, the
findAncestorWithClass(…) method will return a handle to that relative—
allowing the current tag to modify a parameter value. In contrast, the method
getParent() will return only the immediate enclosing tag class.

In order for the findAncestorWithClass(…) method to locate a parental rela-
tive, the child tag must be nested within the parent tag in the JSP page. In
addition, the parent tag cannot evaluate its body.

The findAncestorWithClass(…) method can be called within any tag
handler method. Because the method is static, the handler class does not need
to subclass TagSupport. A Tag instance is returned, so if the ancestral class
is of a different data type, you must cast it in order to access the class’s methods
or instance variables.

When subsequent tags need to pass information or get information
from a parental relative, they can use the Tag handle to access its attribute
methods.

The BodyTagSupport Class

The javax.servlet.jsp.tagext.BodyTagSupport class extends the
TagSupport class and implements the BodyTag interface. The design pro-
vides the BodyTagSupport class the added features of the TagSupport class
and the capability to modify the body of the extension as defined by the
BodyTag interface. This support class provides an iteration life cycle with the
capability to alter the body context that exists between the opening and clos-
ing tags. It also can add and remove tag values.

In addition to the standard methods and variables defined by its inherited
class and interfaces, the BodyTagSupport class offers a new instance variable

http://www.sybex.com

394 Chapter 10 � Using Custom Tags

and some convenience methods to access the bodyContext and the sur-
rounding JspWriter. The new variable is as follows:

protected BodyContent bodyContent provides a handle to the data
that exists between the opening and closing tag elements.

In addition to the new variable, the class also adds the following two
methods:

� public BodyContent getBodyContent()

� public JspWriter getPreviousOut()

Because the support class defines the setBodyContent(…) method,
accessing the BodyContent object can be done either by accessing the
instance variable bodyContent or by using the accessor method
getBodyContent().

The other method, getPreviousOut(), saves you the hassle of first
accessing the bodyContent object to then get the enclosing JspWriter. So
instead of calling

JspWriter out= getBodyContent().getEnclosingWriter();

you can simply call

JspWriter out = getPreviousOut();

Again, this is simply a convenience method that provides access to the
enclosing tag’s writer. Given the potential for nested tags, this approach ensures
that writing done in an inner tag will be concatenated to the outer tag’s output.

Because the BodyTagSupport class extends the TagSupport class and
provides implementation for the BodyTag interface, it offers the most default
custom tag functionality. As a result, it is used most often when creating cus-
tom tags that utilize their body content. If we revisit the code for LoopTag,
you can see how the code is greatly simplified; see Listing 10.6.

Listing 10.6: Utilizing the BodyTagSupport Class

package tagext;

import java.io.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

public class LoopTag extends BodyTagSupport {

 private int iterations;

http://www.sybex.com

Tag Handler 395

 public void setIterations(int value) {

 this.iterations = value;

 }

 public int doAfterBody() throws JspException {

 if(iterations>1){

 iterations--;

 return EVAL_BODY_BUFFERED;

 } else {

 try {

 if(bodyContent != null) {

 bodyContent.writeOut(getPreviousOut());

 }

 } catch (IOException e) {

 throw new JspException();

 }

 return SKIP_BODY;

 }

 }

}

In this example, you should notice a few things. First, there is no need
to define the standard set methods of the tag and its subclassing interfaces.
Second, we use the bodyContent variable directly because it is available
from the BodyTagSupport class. Finally, we call getPreviousOut() instead
of using the bodyContent object to access the enclosing out variable.

The TagExtraInfo Class

Until now, we have shown you one way for a JSP page to access attribute
values. When an action tag declares the value for an attribute, the JSP page
can utilize the variable directly if a setXXX(…) attribute method is defined.
Listings 10.5 and 10.6 use the iterations variable, which is passed from the
JSP page. After the setParent(…) method is invoked, the container calls
the setIterations(…) method, passing in the attribute value from the JSP
page. Although this approach is effective, it requires the tag to individually
define each and every attribute in the tag library descriptor. In addition, you
are unable to specify the scope of the attribute. Instead, the attribute is avail-
able for the life of the action.

http://www.sybex.com

396 Chapter 10 � Using Custom Tags

Another approach is available that provides more flexibility and manage-
able code (meaning you can create an action with 100 variables without
having a huge TLD). By extending the abstract class TagExtraInfo and
overriding one or two of its methods, you can provide a list of variables with
differing scopes to the JSP page and scriptlets that the action might utilize.
To create this list, you must override the first method in the list below. The
second method is optional and simply adds greater functionality:

� public VariableInfo[] getVariableInfo(TagData data)

� public boolean isValid(TagData data)

The container invokes the getVariableInfo() method when attributes
for the action are requested. A TagData instance is passed to the method con-
taining translation time attribute/value pair information defined within the
JSP page. Consider the following code:

<syb:profile name=‘Chris Cook’>

 Welcome to our site <%= name %>

</syb:profile>

In this example, the TagData object would contain a String key called
name with an associated value Chris Cook. It acts like a java.util.Map by
holding a collection of objects, which are accessible through their String
key values. When overriding the getVariableInfo() method, you can use the
TagData handle to call the getAttribute(String name) method and pass
in the name of the attribute to acquire its value. The class ProfileTagInfo
demonstrates how the method can be overridden.

public class ProfileTagInfo extends TagExtraInfo {

 public VariableInfo[] getVariableInfo(TagData data) {

 return new VariableInfo[] {

 new VariableInfo(

 data.getAttribute(“name”),// variable’s name

 “java.lang.String”, // variable’s data type

 true, // True means variable

 // is new

 VariableInfo.NESTED // scope

)

 };

 }

}

http://www.sybex.com

Tag Handler

397

Creating a

VariableInfo

 object requires passing in four parameters to its
constructor. The first is the name of the variable. To prevent runtime errors
or unexpected results, the name of each variable should be unique, because it
is the name of the actual attribute. The second argument is the fully qualifying
class name. The third is a

boolean

. When set to

true

, a new variable is created
by the action and declared within the translated servlet. The variable overrides
the value of an existing variable if necessary. A

false

 declaration means the
variable already exists. The last argument is an

int

 value. It represents the
scope of the variable. Table 10.6 describes your choices.

Figure 10.7 shows the scope range for each constant graphically.

F I G U R E 1 0 . 7

Scope range

As you can tell,

AT_BEGIN

 has the greatest possible scope, whereas

NESTED

 covers the action’s body, and

AT_END

 covers everything thereafter.
Some of these arguments can be defined dynamically with the use of the

TagData

 object passed by the container.

T A B L E 1 0 . 6

VariableInfo

 Scope Options

Scope Description

VariableInfo
.AT_BEGIN

The variable is accessible from the start of the action
tag until the end tag is reached.

VariableInfo
.AT_END

The variable is not accessible until after the end tag
is reached.

VariableInfo
.NESTED

The variable is available only within the action’s body.

NESTED
AT_BEGIN

AT_END<syb:myAction…>

body

</syb:myAction>

http://www.sybex.com

398 Chapter 10 � Using Custom Tags

The second method that is commonly overridden, but optional, provides
elegance to the action’s attribute. The isValid() method is used to validate
the attributes passed to a tag at translation time. It receives a TagData instance,
which can be used to filter out unacceptable values. For example, you might
accept only certain object types or numbers within a particular range. The
default implementation returns a true for all attributes. If configured to return
false, it is still the developer’s responsibility to utilize the attribute correctly.

Now that we’ve shown you how to create the list of variables, we will
show you how to link the variables to the JSP page. The process begins with
the container. When it comes across a variable within a scriptlet, it attempts
to locate the value by looking to the tag library descriptor. An instance of the
implementing class of TagExtraInfo is available by using the tei-class
element to define it. Let’s take a look at an example:

<taglib>

 <tag>

 <name>profile </name>

 <tag-class>ProfileTag</tag-class>

 <tei-class>ProfileTagInfo</tei-class>

 <body-content>JSP</body-content>

 <attribute>

 <name>name</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <tag>

</taglib>

The container locates the class and loads it into memory. At that point, all
the variables are available by mapping the JSP variable name to the variable’s
key name.

In our example, we defined the scope of the variable name as NESTED.
That works fine when we want to use the variable within scriptlets located
inside nested actions. If, however, the scope is defined as AT_END, the vari-
able must be saved to the JSP’s PageContext. Remember, the pageContext
object is one of the first objects set within the page. It lasts for the life of the
page and can hold attributes. Consider the following code:

public int doEndTag() throws JspException {

 pageContext.setAttribute(“name”, “Sasha”);

 return EVAL_PAGE;

}

http://www.sybex.com

Summary 399

In this example, the attribute name is accessible from within a JSP page
after the closing tag for this action is read. If the scope for the variable were
AT_BEGIN, you would need to associate it to the pageContext before the
doStartTag() method. Fundamentally, it is important to know that
attribute variables defined within the PageContext are accessible from
within the JSP page and embedded scriptlets.

The pageContext object is a major resource for storing and accessing vari-
ables. It contains handles to implicit objects and page attributes.

Utilizing the TagExtraInfo class provides a clean way to incorporate a
significant number of attributes into an action. The attributes can be used
from within the custom tag class, the action itself, and scriptlets.

Summary

In this chapter, we covered the topics needed to understand custom
tags. We began by discussing custom tag fundamentals, including the ways
to call a custom tag and the elements that are necessary within the JSP and
web.xml file in order to locate the tag library. We discussed how to create a
tag library descriptor file, which maintains all the tags and their attributes.
Finally, this left us with the core behind custom tags—the actual action or
tag class.

The unique features of each interface and class that utilize the parent Tag
interface were addressed. Although most people will always use support
classes to create their tags, the exam tests your knowledge of the behaviors
and semantics of each method, which depend somewhat on the ancestral
class being utilized. For example, the return type of the doStartTag()
method is different if your class extends BodyTagSupport versus any other
class or interface. We emphasized the details associated with each Tag inter-
face to ensure a thorough understanding of the Tag, IterationTag, and
BodyTag life cycles. Each interface serves a slightly different purpose and should
be utilized accordingly.

We also covered the importance and role that the pageContext plays in
a custom tag by providing access to the application’s implicit variables and
TagExtraInfo attributes. Finally, we covered the impact of the bodyContent
and how to effectively write information out to the client.

http://www.sybex.com

400 Chapter 10 � Using Custom Tags

Exam Essentials

Be able to format tag library declarations in the web application
deployment descriptor. The deployment descriptor uses the taglib
element to identify the URI name, or taglib-uri, used by the JSP page
to then locate the actual tag library by using the taglib-location
element.

<taglib>

 <taglib-uri>/taglib.tld</taglib-uri>

 <taglib-location>

 /WEB-INF/taglib.tld

 </taglib-location>

</taglib>

Be able to identify taglib directives in a JSP page. You can use the
taglib directive within a JSP page to notify the container of the tag
library you are interested in utilizing. The uri attribute maps to the
taglib-uri identified in the web.xml document. The prefix attribute is
used to call the tag from within the page.

<%@ taglib uri=”/taglib.tld” prefix="test" %>

Be able to identify properly formatted custom tag usage in a JSP page.
A custom tag is defined by a prefix value, a colon, and the name of the
action. Attributes are optional and can be listed within the opening tag.
Nesting tags within the body of another tag is also acceptable.

Be able to identify the general tag library descriptor elements. A cus-
tom tag must be embedded within its own set of <tag></tag> elements.
Nested within are the name, tag-class, and body-content elements
used to define the tag’s calling name, fully qualifying class name, and iden-
tifier to notify the server about how to handle the tag’s body.

<tag>

 <name>theDate</name>

 <tagclass>DateTag</tagclass>

 <bodycontent>JSP</bodycontent>

 …

</tag>

http://www.sybex.com

Exam Essentials 401

Be able to identify attribute tag library descriptor elements. Each tag
can have multiple attributes to help provide greater flexibility to the
extension. Nested within the tag element, you will usually find attribute
information, such as its name, an indication of whether it is required, an
indication of whether the value can by dynamically determined within
an expression, and the data type.

<attribute>

 <name>age</name>

 <required>false</required>

 <rtexprvalue>true</rtexprvalue>

 <type>java.lang.Integer</type>

</attribute>

Be able to identify valid values for the body content TLD element.
The body-content element has three valid types: JSP, tagdependent,
and empty. JSP notifies the container that it should evaluate the tag’s
body, whereas tagdependent tells the container to pass the body through
to the action class so that the class can determine what to do with the
body. Finally, empty means the tag cannot have a body.

Be able to describe the life cycles for tag event methods. It is impor-
tant to know the three major interfaces that provide unique functional-
ity for a custom tag. They consist of Tag, IterationTag, and BodyTag.
The two supporting classes, TagSupport and BodyTagSupport,
share similar life cycles. Know which methods are called under certain
circumstances.

Be able to identify valid return values for tag event methods. The
interface or class your custom tag utilizes has a significant effect on which
return types your doStartTag(), doAfterBody(), and doEndTag()
methods deliver. Know the distinction between the SKIP_BODY and
SKIP_PAGE, and when to use EVAL_BODY_BUFFERED versus EVAL_
BODY_INCLUDE.

Know how to utilize the pageContext variable to access page attributes
and implicit variables. Keep in mind that implicit objects are not
directly accessible. You must use the pageContext convenience methods
in order to utilize those variables. Using the pageContext object also
enables you to set attributes for the JSP page to access.

http://www.sybex.com

402 Chapter 10 � Using Custom Tags

Know which methods are used to write information to the implicit out
variable. There are three general ways to access the implicit out vari-
able. Depending on the class your tag extends or implements, you can use
one of the following options:

JspWriter out = getBodyContent().getEnclosingWriter();

JspWriter out = getPreviousOut();

JspWriter out = pageContext.getOut();

Key Terms

Before you take the exam, be certain you are familiar with the follow-
ing terms:

absolute path prefix

base class prefix mapping

body content suffix

context-relative path support classes

custom actions tag extensions

custom tags tag library descriptor (TLD)

nested tags tag value

outer tag TLD resource path

page-relative path

http://www.sybex.com

Review Questions 403

Review Questions

1. Which of the following is an invalid declaration for a tag-uri
element? (Choose all that apply.)

A. <taglib-uri>/taglib</taglib-uri>

B. <taglib-uri>
 http://www.eei.com/taglib
</taglib-uri>

C. <taglib-uri>taglib</taglib-uri>

D. <taglib-uri address=“taglib” />

2. A taglib directive must define which of the following attributes?

A. value

B. prefix

C. uri

D. uri and location

E. uri and prefix

3. Given a custom tag library with a short-name of math, and a tag with
the name of calculate, identify which of the following options best
displays an empty custom tag.

A. <math:calculate />

B. <calculate:math>
 4 + 4
 </calculate:math>

C. <math:calculate />
 </math:calculate>

D. <math:calculate %>

http://www.sybex.com

404 Chapter 10 � Using Custom Tags

4. What interface defines the following method invocation life cycle?

A. setPageContext → setParent → (setAttributes) →
doStartTag → doInitBody → doAfterBody →
doEndTag → release

B. IterationTag

C. Tag

D. BodyTag

E. None of the above

5. Which of the following methods is always invoked exactly one time?
(Choose all that apply.)

A. doEndTag()

B. doStartTag()

C. doInitBody()

D. doAfterBody()

6. Which constant is used to notify the container to reevaluate the cus-
tom tag’s body?

A. EVAL_BODY_TAG

B. EVAL_BODY

C. EVAL_BODY_AGAIN

D. EVAL_BODY_INCLUDE

7. Which of the following tags identifies the TagExtraInfo class used to
pass attributes to a custom tag?

A. class

B. tinfoclass

C. texiclass

D. tei-class

http://www.sybex.com

Review Questions 405

8. Which of the following statements is true?

A. The doInitBody() is called before the body content has been
evaluated for the first time.

B. The doInitBody() method is always called with tags that
implement the BodyTag interface.

C. The doAfterBody() method is always called at least once.

D. All of the above.

9. If the doStartTag() method returns the constant Tag.SKIP_BODY,
which of the following methods will be invoked?

A. doInitTag()

B. doAfterBody()

C. doEndTag()

D. It depends on which tag interface is implemented.

10. Which of the following is the default return type for the doStartTag()
method if the tag handler subclasses TagSupport?

A. EVAL_BODY_BUFFERED

B. SKIP_PAGE

C. SKIP_BODY

D. EVAL_BODY_INCLUDE

11. Which statement is illegal?

A. pageContext.getOut().write(
 bodyContent.getEnclosingWriter());

B. bodyContent.getEnclosingWriter(
 getPreviousOut());

C. bodyContent.writeOut(
 bodyContent.getEnclosingWriter().write(“data”));

D. All of the above

12. Select all legal ways to obtain a JspWriter object if the tag handler
class extends the BodyTagSupport class. (Choose all that apply.)

http://www.sybex.com

406 Chapter 10 � Using Custom Tags

A. getBodyContent().getEnclosingWriter();

B. getPreviousOut();

C. bodyContent.getOut();

D. None of the above

13. Identify the tag library descriptor element used to define the class of a
custom action.

A. class

B. tag-class

C. tclass

D. taglib-class

14. Which of the following code samples best shows how to get the
requested locale?

A. public class MyTag extends BodyTagSupport {
 public int doStartTag() throws JspException {
 Locale locale = request.getLocale();
 return SKIP_BODY;
 }
}

B. public class MyTag extends BodyTagSupport {
 public int doStartTag() throws JspException {
 ServletRequest request=
 pageContext.getRequest();
 Locale locale = request.getLocale();
 return SKIP_BODY;
 }
}

C. public class MyTag extends BodyTagSupport {
 public int doStartTag() throws JspException {
 ServletRequest request=
 pageContext.getRequest();
 Locale locale = request.getLocale();
 return SKIP_PAGE;
 }
}

http://www.sybex.com

Review Questions 407

D. public class MyTag extends BodyTagSupport {
 public int doStartTag() throws JspException {
 Locale locale = getLocale();
 return SKIP_PAGE;
 }
}

15. Which of the following is not a valid type for the tag library descriptor
element bodycontent?

A. JSP

B. servlet

C. tagdependent

D. empty

http://www.sybex.com

408 Chapter 10 � Using Custom Tags

Answers to Review Questions

1. D. The first option is valid because a forward slash simply means the
URI is relative to the context path. The second option utilizes an absolute
path, which is acceptable as well. The third option defines a page-
relative path, meaning the taglib file is relative to the current JSP
page or file. Finally, the last option fails because there is no address
attribute, and a tag-uri path cannot be defined in that fashion.

2. E. The uri attribute defines the path within the web.xml file to locate
the TLD file. The prefix is also mandatory and denotes the short-
name used to identify which library the custom tag is associated with.

3. A. An empty tag has no body. The easiest way to write the tag is to
provide only an opening tag.

4. D. The life cycle is very close to that of the BodyTag; however,
one step is missing. After a call to the doStartTag() method, the
setBodyContent(bodyContent) method is invoked. After that
completes, the doInitBody() is called.

5. A, B. The doStartTag() is invoked early in the life of a JSP. If it
returns an EVAL_BODY_BUFFERED or EVAL_BODY_INCLUDE, then the
doInitBody() method will run one time. If, however, it returns a
SKIP_BODY variable, the doInitBody() method is not executed. The
doEndTag() is also executed once. When it is determined that the
body will no longer be evaluated, the doEndTag() method is invoked.

6. C. When the doStartTag() method is called, it will evaluate the body
if EVAL_BODY_INCLUDE is returned. When the doAfterBody() method
is called, a return value of EVAL_BODY_AGAIN must be returned.

7. D. The tei-class is used to help the container load an array of
attributes for the action to utilize.

8. A. The second option is false because it assumes that the body is
always evaluated. If the doStartTag() returns a SKIP_BODY value, the
doInitBody() method is not invoked. The third option fails as well. It
too assumes the doAfterBody() method is always called. Again, if the
body is not evaluated, neither is the doAfterBody() method.

9. C. Regardless of the tag interface, a return value of SKIP_BODY will
cause the doEndTag() to be invoked next. The first two options are
invoked only if a body is evaluated for certain custom tags.

http://www.sybex.com

Answers to Review Questions 409

10. C. The first and last options are valid return values only if the tag
handler subclasses BodyTagSupport. For a TagSupport implementa-
tion, the default value for the doStartTag() method is SKIP_BODY.

11. D. The first option fails because the JspWriter class does not have
a write method that accepts a JspWriter as a parameter. The second
option fails for similar reasons. The method getEnclosingWriter()
does not take any parameters. Finally, the last option fails because the
write method returns a void instead of a JspWriter object, which is
what writeOut(…) expects.

12. A, B. The first option is legal because it uses the bodyContent object
to get the enclosing action’s output stream. The second option is
merely an abbreviation of the first. It is a helper method that takes one
step rather than two. The third option fails because the bodyContent
object is an OutputStream and does not provide a getOut() method
to access embedded streams.

13. B. The element tag-class is used to define the fully qualifying tag
class name.

14. B. Implicit objects are not directly accessible. You must use the
pageContext variable to acquire these objects. This leaves both B and
C as options. C fails because SKIP_PAGE is not a valid return for the
doStartTag() method.

15. B. The term servlet is not legal. JSP signifies that the container should
evaluate the action’s body, whereas tagdependent suggests it should
not. If empty is defined, then a body cannot be used.

http://www.sybex.com

Chapter

11

Web Tier Design
Patterns

THE FOLLOWING SUN CERTIFIED WEB
COMPONENT DEVELOPER FOR J2EE
PLATFORM EXAM OBJECTIVES COVERED
IN THIS CHAPTER:

�

13.1 Given a scenario description with a list of issues, select

the design pattern (Value Object, MVC, Data Access Object,

or Business Delegate) that would best solve those issues.

�

13.2 Match design patterns with statements describing

potential benefits that accrue from the use of the pattern,

for any of the following patterns:

�

Value Object
�

MVC
�

Data Access Object
�

Business Delegate

http://www.sybex.com

T

he development of an application is often sparked by the need
to resolve a particular problem. The decisions behind resolving that problem
are usually influenced by cost, time, and functionality; the order of priority
usually depends on the project. The difficulty, however, is that for every
problem, there are multiple solutions. Depending on existing variables and
long-term desires, a solution can vary from situation to situation.

Design patterns

 offer a proven “cookbook” answer to resolve the problem
while managing various extraneous issues. There are many books on this
topic alone, defining more than 30 patterns, but we will cover only four as
they pertain to the J2EE model and the Sun Certified Web Component
Developer for J2EE Platform exam:

�

Value Object pattern

�

Data Access Object pattern

�

Business Delegate pattern

�

Model View Controller pattern

We will define the behaviors of each pattern and identify ways to distin-
guish one from another. We will also cover the advantages and disadvantages
of each pattern. Our goal is to ensure that you have a thorough understand-
ing of each pattern and the knowledge necessary to answer scenario- and
benefit-based questions.

Before we jump into discussing each pattern, you need to have an under-
standing of the major components utilized within the J2EE architecture.
Figure 11.1 displays each tier and its purpose.

Until now, we have discussed the Presentation tier and the Web tier; how-
ever, we’ve neglected the Server tier, which manages all Enterprise Java Beans,
or EJBs. Although the exam does not test your knowledge of these components,
a general discussion of the Server tier will help clarify each design pattern.

http://www.sybex.com

Server Tier Components

413

F I G U R E 1 1 . 1

The J2EE tier design for the Web

Server Tier Components

T

he web browser (Presentation tier) and web server (Web tier)
communicate by way of servlets and JSPs, and the web server (Web tier)
and application server (Server tier) communicate by way of

Enterprise
Java Beans (EJBs)

. Contained within an application server, EJBs are Java
classes that implement business services and rely on the server to manage
their life cycle and architectural services such as security, transaction man-
agement, and persistent data storage, to name a few. A Java

application
server

 is a vendor product that, at a minimum, adheres to the EJB speci-
fication to provide support for the various forms of EJBs. To understand
the benefits of certain design patterns, you must first have a general under-
standing of EJBs.

In this section, we will explain the purpose and functionality of the two
main types: entity beans and session beans. After you understand how each
component behaves, we will begin our discussion on J2EE design patterns.

Entity Beans

An

entity bean

 is a transactional object that represents persistent data. In lay-
man’s terms, this means it is a special Java class that manages the inserts,

Web browser

Presentation tier

uses:

Applets
HTML
XML

(other)

communicates
with:

HTTP
(other)

Web server

Web tier

uses:

Servlets
JSPs

communicates
with:

JNDI
RMI

CORBA
(other)

Application
server

Server tier

uses:

Entity EJBs
Session EJBs

communicates
with:

JNDI
RMI

CORBA
JDBC

(other)

Database
mainframe

(other)

EIS tier

persists data

http://www.sybex.com

414

Chapter 11 �

Web Tier Design Patterns

updates, deletes, and selects from a database for a particular record. Usually,
each entity bean represents a record in a single table or multiple tables. Each
entity class contains data representing the attributes from the database
tables. Using an entity’s

get

XXX

()

 or accessor methods, a servlet (or client,
or session bean) can request information from the entity. When an entity
bean is invoked, it usually results in a query or change to the associated data-
base. Because entity beans are pooled to improve efficiency, they have a
many-to-many relationship with the client. This means that multiple clients
can access more than one entity bean of the same kind. Figure 11.2 shows
where entities fit into the J2EE architecture.

F I G U R E 1 1 . 2

Entity beans

In the image, you see each entity bean communicating with the database.
Usually, application servers provide a connection-pooling mechanism to
reduce the number of unnecessary connections; pooling enables a system
to service a larger population with few instances (or connections). The result
is an increase in performance.

Performance is also influenced by the design of the entity bean itself.
Because each database call is potentially remote, reducing the number of
unnecessary calls will improve the application’s performance. Consider the
scenario of an entity providing a “get” method to return each data field asso-
ciated to a record. The client would need to make multiple requests to retrieve
a single record. Assuming each call is remote, this approach utilizes excessive
bandwidth—resulting in inefficiency.

The proper use of an

appropriate

 design pattern could improve the effi-
ciency of an entity. Before we discuss pattern options, we will first address
session beans.

Pool

Application server

Session

Session

Session DatabaseEntity

Entity

Entity

Entity

http://www.sybex.com

Server Tier Components

415

Session Beans

Unlike entity beans,

session beans

 generally do not modify the database.
Instead, they provide business services to the client. These services are usu-
ally task oriented. For example, you might have a

TravelAgent

 session bean
that provides a method to locate available flights or book a flight.

To accomplish a particular task, a session bean usually employs the help
of entity beans. Figure 11.3 shows how a session uses entities to communi-
cate with the database.

F I G U R E 1 1 . 3

Session bean

A service or task is usually made up of several database calls. Going back
to our

TravelAgent

 example, the act of booking a flight entails the follow-
ing process:

1.

Acquire available flights.

2.

Reserve flight with client’s information.

3.

Charge client’s credit card.

At least two entity beans could be used to handle the airline and client
information. After the transaction is complete, the client receives the neces-
sary confirmation data, which might include the flight number, the time of
departure, the cost, and so on.

There are several approaches a developer could take to provide the client
with all their flight information. The first requires the application to make
multiple requests to obtain each individual field item associated to the trip;
the second simply has the application request a single object containing

Client,
servlet,
or JSP

Session

Entity

Entity

Entity

Entity Entity

Entity

Entity

Entity

Entity

Entity

Entity

Entity Database
Pool

Application server

http://www.sybex.com

416

Chapter 11 �

Web Tier Design Patterns

all the necessary flight information. Because the second approach utilizes
less bandwidth, resulting in one network call instead of many, the applica-
tion’s performance increases. This particular technique utilizes the common
design pattern called the Value Object pattern.

Now that you have a basic understanding of the role that both session and
entity beans play in the J2EE architecture, we can discuss the Value Object
and other patterns used to improve an enterprise application’s performance,
maintainability, and expandability.

Value Object Pattern

T

he

Value Object pattern

 is designed to reduce the number of method
calls a client must make to obtain information. It is made up of a single
class called a

value object.

 This lightweight class is created by an entity or
session bean, populated with bean attribute values, and passed to the client
for easy access. Its structure is as follows:

�

It usually provides a variety of constructors that accept attribute values
designed to create the value object.

�

The members of the value object are defined as

public

 to eliminate the
need for “get” or “set” methods.

�

If there is a need for

private

 or

protected

 data, “get” methods can
be provided; however “set” methods should still be avoided unless
absolutely necessary.

In general, it is considered bad coding practice to make variables

public

. This
however, is not a huge concern with value objects. Because the value object
is created via a remote entity bean and passed

by value

 back to the client,
the client operates on a local copy of the value object and is not modifying the

data of the remote copy.

There are design strategies you should consider when creating value
objects. You can make the member variables

public

, with no “get” or “set”
methods. Or you can make the member variables

private

 or

protected

,
and include “get” methods and “set” methods if necessary. Figure 11.4
shows the general life cycle of this pattern.

http://www.sybex.com

Value Object Pattern

417

A client makes a request to an EJB, which in turn creates a value object
containing all the necessary data to fulfill the client’s demand. A copy is then
sent to the client—which can use its copy of the value object to extract data
from the instance.

F I G U R E 1 1 . 4

The Value Object life cycle

Whether you allow the user to set values in a value object is influenced by
the pattern strategy you choose to implement. The exam requires that you
know how to identify a value object. Consequently, you should be familiar
with how the pattern is used. There are four defined strategies for this pattern.
The first creates a value object whose attributes can be changed. The second
enables a bean to create and utilize more than one value object. The third has
the entity bean extend the value object. Finally, the fourth is the most com-
plex; it allows the entity bean to inherit from more than one value object.
In the remainder of this section, we’ll describe each strategy and then discuss
the pros and cons of the Value Object pattern as a whole.

Updateable (or Mutable) Value Object

A value object that has “set” or mutator methods or

public

 members is con-
sidered

updateable

, or

mutable

. The

Updateable (or Mutable) Value Object
strategy

 is utilized when you want the client to be able to change its value
object instance. There are three ways to create mutable value objects; their
class can supply any one or a combination of the following features:

�

public

 variables

�

Constructors

�

“Set” methods

Client EJB Value
object

Client
value object

1. Get data

2. Get value

3. Get value

1.1 Create
1.2 Return value object

http://www.sybex.com

418

Chapter 11 �

Web Tier Design Patterns

Generally there are two common approaches. The first uses both public
variables and constructors to create the value object. For example:

public class Ticket {

 public double cost;

 public Date purchaseDate;

 public Ticket() {}

 public Ticket(double cost, Date purchaseDate) {

 this.cost = cost;

 this.purchaseDate = purchaseDate;

 }

}

The second approach enables the user to change its private data through
the use of constructor or “set” methods:

public class Ticket {

 private double cost;

 private Date purchaseDate;

 public Ticket() {}

 public Ticket(double cost, Date purchaseDate) {

 this.cost = cost;

 this.purchaseDate = purchaseDate;

 }

 public void setCost(double cost) {

 this.cost = cost;

 }

 public void setDate(Date purchaseDate) {

 this.purchaseDate = purchaseDate;

 }

 public double getCost() {

 return this.cost;

 }

 public Date getDate() {

 return this.purchaseDate;

 }

}

http://www.sybex.com

Value Object Pattern

419

Either approach is acceptable and used depending on security and memory
requirements.

There is one other consideration. Sometimes value objects are amazingly
complex and have a large number of “set” methods. In such cases, it might
be beneficial to include a

setData(…)

 method to set all values at once.

…

public void setData(double cost, Date purchaseDate) {

 this.cost = cost;

 this.purchaseDate = purchaseDate;

}

…

Some books suggest passing in an instance of your value object to the

setData(

ValueObject

obj

)

. We choose not to recommend this approach
because it merely causes the user to go through an extra step. Creating a new

instance ultimately provides no additional benefits.

A call to the

setData(…)

 method simply causes all attributes to change in
one step. By providing a

setData(…) method within the value object, you
reduce the number of calls a client needs to make if they intend to make mul-
tiple changes to the object’s data. After the value object is configured to an
acceptable state, it can be passed to an entity or session bean to update some
other source.

On a basic level, this is quite a simple design and strategy. It gets more
complex when a single EJB utilizes more than one value object.

Multiple Value Objects

It is quite feasible that either an entity or session bean will utilize more than
one value object. Imagine a Bank bean that provides information to all your
accounts. The bean provides client information, checking, savings, and money
market history, and more. Each category could warrant a separate value
object. The Multiple Value Objects strategy enables the EJB to create associ-
ated value objects with “get” methods to each referenced object. Figure 11.5
shows how a single EJB object can utilize multiple objects.

This strategy is quite common in complex application systems. In general,
session beans are more likely to use multiple value objects as they attempt to
accomplish multiple tasks to complete a process. In such cases, each task can
reference a separate value object.

http://www.sybex.com

420 Chapter 11 � Web Tier Design Patterns

F I G U R E 1 1 . 5 Multiple value objects associated with a single EJB

Simple entity beans are less likely to use this strategy because they map
to a single record. If, however, a record contains fields that represent entire
records from other tables, then the entity will likely use multiple value objects.
If a Ticket value object references another value object, which represents
the type of ticket, then creating the object becomes a bit more complex. Con-
sider the following:

public class Ticket {

 private double cost;

 private Date purchaseDate;

 private Type ticketType;

 public Ticket() {}

 public Ticket(double cost, Date purchaseDate,

 Type ticketType) {

 this.cost = cost;

 this.purchaseDate = purchaseDate;

 this.ticketType = ticketType;

 }

 public Type getType(){

 return this.ticketType;

 }

 …

}

For a client to create or modify the Ticket object, they must first create
or access the Type object.

When using this approach, it is critical that value objects are designed to be
granular but not too granular. If a value object is too large, and only a small
portion of its content is modified regularly, then you are unnecessarily trans-
ferring a larger-than-needed object between client and server—causing traffic
and inefficiency.

Client, servlet, or JSP EJB object

Value object A

Value object B

http://www.sybex.com

Value Object Pattern 421

Entity Inherits Value Object

As its name indicates, the Entity Inherits Value Object strategy applies only to
entity beans. Its purpose is to eliminate code duplication by having an entity
bean extend the value object class. This means a value object is created when
an entity is instantiated. As soon as a client utilizes the entity, the container will
populate the entity with the necessary data values that represent the desired
record. Instead of storing the data directly in the entity class, the data is actu-
ally inherited from the value object. Let’s revisit the basic Ticket example:

public class Ticket {

 protected double cost;

 protected Date purchaseDate;

 public Ticket() {}

 public Ticket(double cost, Date purchaseDate) {

 this.cost = t.cost;

 this.purchaseDate = purchaseDate;

 }

 public void setCost(double cost) {

 this.cost = cost;

 }

 public void setDate(Date purchaseDate) {

 this.purchaseDate = purchaseDate;

 }

 public double getCost() {

 return this.cost;

 }

 public Date getDate() {

 return this.purchaseDate

 }

}

If an entity bean extends this class, then it does not need to provide value
object logic:

public class TicketEJB extends Ticket

 implements EntityBean {

 //mandatory entity methods

http://www.sybex.com

422 Chapter 11 � Web Tier Design Patterns

 public Ticket getData(double cost, Date purchaseDate) {

 return new Ticket(cost, purchaseDate);

 }

}

The design calls for the following method to be included in the entity bean:

public ValueObject getData() {…}

To obtain the value object reference, the client calls getData(…) on the
entity bean. The bean, in turn, returns an instance of its superclass.

The benefits of this strategy are as follows:

� It eliminates code duplication within the entity and the value object
because data is stored in one location—the value object.

� It helps manage changes to the entity and value object because the
data exists in only one class rather than two.

The less appealing aspect of this strategy is the following:

� A change to a value object can affect all its subclasses.

Significant changes to an application’s hierarchy can be cumbersome. A
solution to this problem is to layer the Value Object Factory strategy on top
of this one.

Value Object Factory

The Entity Inherits Value Object strategy allows the entity bean to extend only
one value object. Yet the Multiple Value Objects strategy shows that an entity
bean can often utilize more than one value object. The Value Object Factory
strategy solves this problem. Through the use of interfaces, the Value Object
Factory strategy enables an entity to inherit from more than one value object.

The process consists of the following steps:

1. Create an interface for each value object.

2. Create a value object class to implement its respective interface.

3. Create a factory class with a constructor that takes the following
arguments:

� The entity bean instance intending to create the value object

� The interface that identifies which value object to create

4. Instantiate the factory from within the entity to create the needed
value objects.

http://www.sybex.com

Value Object Pattern 423

The following example breaks down each step by providing pseudo-code
samples of each piece required to create a value object factory.

Step 1—Create the interfaces:

public interface Ticket {

 public void setCost(double cost);

 public void setPurchaseDate(Date purchaseDate);

 public double getCost();

 public Date getDate();

}

public interface Airline {

 public void setFlightNo(int no);

 public int getFlightNo();

}

Step 2—Implement the interfaces:

public class TicketVO implements Ticket {

 private double cost;

 private Date purchaseDate;

 // implement all the get and set methods

}

public class AirlineVO implements Airline {

 private int flightNo;

 // implement all the get and set methods

}

Step 3—Create the factory:

public class VoFactory {

 public static final int TRIP =0;

 public static final int CUSTOMER =1;

 …

 public VoFactory (EntityBean bean, int type) {

 switch(type){

 case TRIP:

http://www.sybex.com

424 Chapter 11 � Web Tier Design Patterns

 Field[] field =

 bean.getClass().getDeclaredFields();

 for (int i=0; i< field.length; i++) {

 …

 // use reflection to associate

 // bean instance to appropriate value objects

 }

 break;

 case CUSTOMER:

 …

 break;

 }

 }

}

Step 4—Create the client:

public class TripEJB implements EntityBean {

 private Ticket ticket;

 private Airline airline;

 public TripEJB() {

 VoFactory fact = new VoFactory(this, VoFactory.TRIP);

 }

 … // All mandatory entity bean methods

}

With a handle to the entity bean, the factory class can instantiate all the
required value objects for the specific entity and assign it the bean’s attribute
values through reflection.

Although this approach offers expandability, flexibility, and maintain-
ability benefits, it sacrifices performance due to the overhead involved in
using reflection to set the variables.

Advantages and Disadvantages

Depending on the project constraints and design goals, there are certain advan-
tages and disadvantages you should consider when creating value objects.

http://www.sybex.com

Value Object Pattern 425

Advantages

There are three main benefits associated with using value objects. They
reduce network traffic and code duplication, while protecting transactional
data blocks:

Reduces network traffic The Value Object pattern acts like a data car-
rier and enables data to be passed between client and server by using one
remote method call. This improves network performance.

Reduces code duplication When an entity inherits from a value object,
there is no need to include attribute data within the entity. Instead, the
members are inherited. This results in reduced code duplication. If the Value
Object Factory strategy is utilized, then the same benefit occurs; however,
you face an increase in application complexity.

Enables concurrent access and transactions The EJB container offers
transaction isolation levels to help manage multiple access to the same
data. An isolation level defines the degree of strictness an application will
maintain for data access. By defining the correct isolation level, the integ-
rity of a value object can be protected.

Disadvantages

Unfortunately, poor use of design patterns can actually harm an application.
There are three potential problems that should be considered when utilizing
value objects. The first relates to maintaining stale data; the second is about
threading issues; and the third pertains to the effects of transferring large
objects over the network:

Updates propagation and stale value objects When a value object is
mutable, the client could be holding on to an instance that no longer
represents the current record state. Imagine multiple clients making
requests to the same record. If each client captures the same data and
one makes a change, all other clients will hold stale data. This could
have negative effects as further changes might not be warranted based
on the new values.

Creates synchronization and version control issues After an entity
bean modifies a record in the database, it must then save the new values
to its own set of attribute values. If more than one client simultaneously
makes an update to the same record, the bean could end up with incor-
rect data. To solve this problem, the entity can synchronize the bean or

http://www.sybex.com

426 Chapter 11 � Web Tier Design Patterns

value object to prevent more than one thread from accessing the same
record at a time. The other solution is to have the value object have a
time stamp and version number attribute. Thus the bean can determine
whether it has the latest update.

Decreases network performance Performance can decline if the data
shipped is very large. A value object provides the application with the
capability to transfer information by using one remote call instead of mul-
tiple calls. The downside to this technique is that it causes larger amounts
of data to be shipped in one call. Depending on the object size, this can
sometimes be more of a problem than a benefit.

Data Access Object Pattern

Behind every large and successful application is a strong information
storage system. Most web applications deal with stored data in one way or
another. Whether the data consists of inventory for purchasing, session
activity for client history, or static information to display, an application
eventually needs to write to or read information from some repository. The
problem is that the repository or data-storage mechanisms can vary greatly.
Many systems maintain data on mainframes, relational database manage-
ment systems (RDBMS), object-oriented database management systems
(OODBMS), LDAP repositories, flat files, and more.

One benefit the Java language offers is the ability to “write once, imple-
ment anywhere.” Well, that phrase is only as effective as the developer writ-
ing the code. Java Database Connectivity, or JDBC, is a common way Java
communicates with RDBMS databases. Making database calls is a prime
example of where the “implements anywhere” can fail.

Using the JDBC API, you can easily write code that will execute on any
JDBC-supported database. That is because the vendor implements the
defined interfaces, and you, the developer, use the standardized method
names and interfaces that compliant vendors define. The shortcoming,
however, occurs when you send a custom String value that represents a
database command (Structured Query Language, or SQL, statement) to
the driver. Some drivers will accept more complex statements, and others
accept only the basic. The end result is that you can write vendor-specific
code while using Java.

http://www.sybex.com

Data Access Object Pattern 427

Unfortunately, eliminating vendor dependence altogether usually comes
with a cost. Often that sacrifice is efficiency or flexibility. Because both are
important, a design pattern has emerged to provide both vendor flexibility
and the ability to seize the benefits a particular vendor can offer. The pattern
is called the Data Access Object (DAO) pattern. Adhering to the object-
oriented principle of isolating object tasks, the pattern separates the logic
needed to communicate with the Enterprise Information Systems (EIS) into
its own class. This means a business object such as an entity or session bean,
or a servlet or JSP component, utilizes a data access object (DAO) to handle
all EIS-related transactions.

A business object is a client object that requires access to the data source in
order to obtain and store data.

Figure 11.6 diagrams the process.

F I G U R E 1 1 . 6 The Data Access Object diagram

If your application utilizes a relational database, you might have separate
DAO objects to handle inserts, updates, deletes, and queries for each table,
value object, or entity bean. If a new data source is required, the DAO objects

uses

manages

Business object
[client, entity,

session servlet,
or JSP]

Data access object (DAO)
[void insert(…),
void delete(…),

void update(…), etc.]

Data source
[database, LDAP server,

flat file, credit card
bureau, etc.]

http://www.sybex.com

428 Chapter 11 � Web Tier Design Patterns

are modified, leaving the business objects untouched. At a minimum, this
pattern requires the following three elements:

� A business object, utilizing each DAO interface and its methods to
communicate with the EIS tier

� A DAO class, providing the specific vendor implementation for
communication

� A data source, representing the data storage device

It is considered good coding practice to create an interface for each DAO
object. Business objects should utilize the interface name to minimize the
number of modifications necessary when a new DAO implementation is
provided.

You can utilize three implementation strategies to maximize the benefits
of this design pattern. The first is to simply hard-code the communication
logic for each method accessing the data source, the second is to use a mech-
anism to automatically generate the data source communication code, and
the third is to create a factory class that handles the construction of each
DAO object. We will discuss each in detail.

Basic Database Access Object

When writing an entity bean, which normally maps to a database record,
you can handle the persistence data two ways: either the bean can provide
the SQL—this is known as Bean Managed Persistence (BMP), or the EJB
container can generate the SQL—this is known as Container Managed
Persistence (CMP).

With CMP beans, the container automatically services all persistent storage
access, so there is no need to use the Data Access Object design pattern.

If you write the SQL yourself, you are encouraged to create a separate
class that handles all this logic; this is known as the Basic DAO strategy. The
SQL class you create is actually your DAO object. Your bean can then call
the DAO object to use its methods and communicate to the database. Let’s

http://www.sybex.com

Data Access Object Pattern 429

consider a DAO object representing an airline object. Its pseudo-code might
look similar to the following interface and class:

public interface AirlineDAO {

 public void insert(String query);

 public void delete(String query);

 public void update(String query);

}

class AirlineDAOImpl implements AirlineDAO {

 …

 private AirlineDAOImpl(String source) {

 // make connection

 }

 public static AirlineDAO getDAO(String source) {

 return new AirlineDAO (source);

 }

 public void insert(String sql) {

 …

 }

 public void delete(String sql) {

 …

 }

 public void update(String sql) {

 …

 }

 …

}

In this example, we force the user to acquire an instance to the class by
using the static getDAO(String source) method. By passing a qualifier,
such as a driver for a database or filename for a flat file, we generate the nec-
essary connection in the constructor and pass a new handle to the client. If
the data source is changed, the DAO object will need to be modified, along
with one line of code used to obtain the DAO object in the business object.

By passing a new instance to each caller, we can protect against some thread-
ing issues that could occur if more than one object shared access to this one
object.

http://www.sybex.com

430 Chapter 11 � Web Tier Design Patterns

Automatic Code Generated Data Access Object

While the Basic DAO strategy improves code management with respect to
the business object, the Automatic Code Generated Data Access Object
strategy eliminates the need to modify the DAO object in addition to the
business object.

The Automatic Code Generated Data Access Object strategy assumes
the use of a tool or technology to eliminate the need to manually write the
code of each DAO object. This technique can be used to investigate the
underlying system and create mappings between the information and
the DAO object to then generate the appropriate code. One example is the
Java reflection API, which uses introspection to dynamically determine
table names and fields that can be mapped to each access object. Another
example might be a tool that maps objects to relational databases. If you
are familiar with Container Managed Persistence for an entity bean, the
container provides such a device.

The benefit of this strategy is that it reduces the amount of code the devel-
oper needs to generate. If changes to the DAO object are updated dynamically,
the client will probably experience a runtime delay the first time the instance
is created. The reason for the delay is that techniques such as introspection
and reflection take time up front.

Factory for Data Access Object

The third strategy can utilize either the basic or automatic code generation
approach to generating the DAO. Its main focus, however, is to create a pool
of DAO objects that can easily be accessed from any data source without
requiring code modifications.

In Java terms, a factory is a class that creates instance variables for a
specific class type. The Factory for Data Access Object strategy is designed
to have a class provide DAO objects for a specific data source. An applica-
tion calls on the factory to acquire a particular data source DAO instance.
When a new data source is introduced, it is added to the factory and made
available to the user through a static method call. Old code is not broken,
and new code has greater flexibility. For a single data source, the design
requires the following code pieces:

� A DAO factory interface, which defines the “create” methods for each
accessible data access method.

http://www.sybex.com

Data Access Object Pattern 431

� A DAO factory class, which implements each factory interface method
to return an actual DAO object

� A DAO object, which is created by the factory and passed to the client
to handle data source management

To demonstrate the parts necessary to make this pattern come alive, we
are going to revisit the AirlineDAO data access object example. This time,
however, we are going to assume that the DAO object might reside in
different data sources.

Step 1—Create the factory interface:

public interface DAOFactory {

 public AirlineDAO createAirlineDAO();

 public HotelDAO createHotelDAO();

}

Step 2—Provide a data source implementation of the factory interface:

public class RdbDAOFactory implements DAOFactory {

 private Connection con;

 public RdbDAOFactory(String url) {

 // make connection

 conn = …;

 }

 public AirlineDAO createAirlineDAO() {

 return new AirlineDAO(conn);

 }

 public HotelDAO createHotelDAO() {

 return new HotelDAO(conn);

 }

}

Using an interface to define each “create” method enables a new data
source to provide its own implementation without modifying existing
code. For example, if you wanted to create another factory implemen-
tation for an object-oriented database, you would write yet another
class that implements the DAOFactory and defines all its methods in a
custom fashion.

http://www.sybex.com

432 Chapter 11 � Web Tier Design Patterns

Step 3—Create the DAO objects:

public interface AirlineDAO {

 public void insert(String query);

 public void delete(String query);

 public void update(String query);

}

class AirlineDAOImpl_RDB implements AirlineDAO {

 …

 public AirlineDAOImpl_RDB(String source) {

 // make connection

 }

 public void insert(String sql) {

 …

 }

 public void delete(String sql) {

 …

 }

 public void update(String sql) {

 …

 }

 …

}

Each data access object must be implemented for this type of data source.

Step 4—Create the class that provides access to the desired factory:

public class EISFactory {

 public static DAOFactory

 getRdbDAOFactory(String driver) {

 return new RdbDAOFactory(driver);

 }

 public static DAOFactory

 getOdbDAOFactory(String driver) {

http://www.sybex.com

Data Access Object Pattern 433

 return new OdbDAOFactory(driver);

 }

}

A factory class must be provided to enable the client to obtain a handle
to the desired data source. Usually the factory class will pool instances;
for our example, it will simply return a new instance to the caller.

In the end, the client will make the following calls to gain access to the
data access objects for a specific relational database:

public class Client {

 public static void main(String[] args) {

 DAOFactory dao =

 EISFactory.getRdbDAOFactory(“com.sybex.driver”);

 AirlineDAO airline = dao.createAirlineDAO();

 airline.insert(…);

 …

 }

}

What you gain from this approach is the ability to add a new data source
type to the EISFactory class, which produces an independent implementa-
tion of each data access object. Previous code that relies on existing
resources will not require change. If code must be moved to the new
system, one change in the business object is required to call the correct
getXXXFactory(…) method. All other code is unaffected if the database
query code is acquired from an external source (such as a file). Ultimately,
the client is left untouched.

The other reason for using this design is to manage pooled connections to
a particular resource. While we didn’t show that technique, it is a common
reason for using any kind of factory.

This approach takes a little more work up front, but limits the amount of
work required when a new data source is introduced into an application.
What you gain is an application that is easy to manage and extensible—it can
grow without affecting previously written code.

Advantages and Disadvantages

As with all advances or approaches, there are advantages and disadvantages.
Depending on the size of the application and potential for change, this pat-
tern can offer benefits or cause unnecessary work.

http://www.sybex.com

434 Chapter 11 � Web Tier Design Patterns

Advantages

In general, there are many benefits to the Data Access Object design pattern.
They include:

Hides data access implementation code When the business object
invokes a DAO method, the actual implementation is hidden and trans-
parent to the client.

Eliminates code dependencies Separating the DAO object from the
business object makes migrating to a new data source seamless. When
using factories, a change in data source affects only the Data Access
Object layer, leaving the client ignorant to the modification.

Improves code readability and development productivity This happens
for two reasons. The first is a result of separating the business object logic
from the data access logic. Complex data manipulation code is maintained
within its own DAO object. This form of organization can vastly improve
the productivity to generate and maintain a complex application. The sec-
ond reason the code is more readable and faster to develop is because this
pattern centralizes all data access into a separate layer. Isolating sections of
code from others can vastly improve code maintenance.

Disadvantages

As with all technologies, the Data Access Object pattern can be used incor-
rectly or create additional overhead. Disadvantages include the following:

Provides more classes to manage By separating access code into differ-
ent classes, you have more classes to handle.

Causes excessive code maintenance Sometimes developers get overzeal-
ous about using patterns and utilize them when they aren’t needed. For
example, if it is highly unlikely for the application to change data source
types, the factory approach might be overkill.

Business Delegate Pattern

Now that you have an understanding of how and why to use data
access objects to help communicate with the information storage system, we
will cover a design pattern that helps the presentation components commu-
nicate with business services.

http://www.sybex.com

Business Delegate Pattern 435

The Business Delegate pattern is used to prevent the exposure of all
business services to the client. A business service is a specific behavior or
method(s) performed by a servlet, JSP, or EJB. There are several reasons why
client code should not access server-side services directly:

� It makes the client vulnerable to change. As the business evolves, there
is a good chance the business service API will change as well; with the
client communicating directly with services, the client code will also
need to be changed.

� There is an impact on network performance. To look up and access data,
the client might need to make more method calls than truly necessary.

� The client must deal with network issues associated with EJB technol-
ogy. For the servlet to communicate with an EJB, it must deal with the
lookup and access details of the EJB architecture.

By placing a layer between the client and server, changes made to one side
do not affect the other. This layer is called the Business Delegate layer. The del-
egate hides the details of the underlying system. For example, it can handle:

� The naming and lookup services for EJBs

� Business service exceptions such as EJBException

� Server result caching

The naming and lookup services should be transparent to the client. This
is a task that can be handled by the delegate. Generally it takes two steps to
access a single EJB object handle. The first step is a lookup technique that
provides access to the bean’s Home object. The second step is to use the Home
object to either find or create the desired bean. When a delegate is used, the
client is shielded from this process.

Another task handled by the delegate is the interception of server-side
exceptions. When an EJB exception is thrown because some error occurred
with a bean, the client should not be responsible for considering EJB archi-
tectural issues to develop an alternative plan. Instead, the delegate can
capture these exceptions and, in turn, generate an application-level excep-
tion to send to the client. This keeps the client focused on client-related
issues and problems.

The final task a delegate can handle is caching client results. Instead of
requiring the client to cache all potentially needed information, making
the servlet or JSP object very large when transferred over the network, the

http://www.sybex.com

436 Chapter 11 � Web Tier Design Patterns

delegate can store the information and provide it to the client upon request.
This greatly improves performance and limits the number of network calls.

Figure 11.7 shows how the delegate fits into the application design.

F I G U R E 1 1 . 7 The Business Delegate pattern

This figure shows the client communicating to the delegate, which then
communicates with the business services. Some common business services
are enterprise beans or Java Messaging Service (JMS) components. Two
strategies can be applied to this pattern. The first is the Delegate Proxy and
the second is the Delegate Adapter. Both are discussed next.

Delegate Proxy

The Delegate Proxy strategy places a layer between the client and server,
exposing all business methods to the client. The proxy handles the underly-
ing tasks needed to invoke each business method without the client needing
to worry about lookup, location, or exception information. From the client’s
perspective, it simply calls the business methods and they “magically” work.

Delegate Adapter

The Delegate Adapter strategy is used when two systems do not use the same
integration language. Let’s say the client is written in XML and the server
components are EJBs; an adapter would be required to join the two distinct
systems. The XML client would invoke the adapter, which would parse the
XML request to then create a delegate and invoke its methods. The delegate
would perform its normal communication with the business service (or bean)
and ultimately return results back to the adapter. The adapter could then
prepare the appropriate XML and return it to the client.

Advantages and Disadvantages

Adding yet another layer to an application can provide benefits if used under
the right circumstances. It can also add unnecessary complexity if the design
does not require a translation layer.

Client Business
delegate

Business
services Data source

http://www.sybex.com

Model View Controller Pattern 437

Advantages

On the whole, this pattern requires more work up front, but provides several
long-term benefits. They include:

Improves code manageability Code is more manageable because client
components are not directly linked to server-side components.

Provides easier exception handling Because the delegate can trans-
late business service exceptions, the client needs to deal only with
application-level issues. The delegate can capture network-related excep-
tions and send more client-oriented exceptions. This simplifies client code
management, because the client does not need to decipher details that are
not related to the Presentation tier.

Offers a simpler business service API While a server application might
have many session beans available, the delegate provides a clean list of
available methods to the client without worrying about which session to
invoke to access a particular behavior. All session management and trans-
actions are handled either at the delegate level or on the Server tier—away
from the client.

Improves performance Because the delegate can cache services, the
Presentation tier does not need to make as many network calls to access
commonly requested data.

Disadvantages

There are a few minor disadvantages to this pattern. They include:

Adds complexity By adding an extra layer, you increase the intricacy of
the application.

Decreases flexibility The client is restricted to the options provided by
the delegate.

Model View Controller Pattern

Until now, we have discussed the Value Object and Database
Access Object patterns, which separate server-side tasks into individual
components. We also covered the Business Delegate, which is used to

http://www.sybex.com

438 Chapter 11 � Web Tier Design Patterns

separate the clients from the business services. The Model View Controller
(MVC) pattern affects the Presentation layer to improve the application’s
extensibility, flexibility, and manageability. MVC divides the display logic
from the code that causes change.

A project’s success is often measured by its immediate return value, and its
future ability to expand, change, be maintained, and adapt. Most applica-
tions should be written with extensibility in mind; this means changes or
additions do not break existing components. The Model View Controller
design pattern is geared toward creating an application that can increase
client-side functionality without warranting changes to the server-side code.

The pattern was originally developed by using the language SmallTalk
and later gained popularity in the Java market through its extensive use
within the Swing component library. The pattern takes a single graphical
object and breaks down its tasks into three pieces:

� The controller, which triggers a change to the component

� The model, which manages the data by providing methods to alter or
access the information

� The view, which provides a visual display of the current data

A scrollbar component is a perfect example of MVC in action. It has a few
controllers, both up and down buttons, plus the slider. When any of these
elements is used, the controller invokes the model. The data associated with
a scrollbar is usually an int value that represents the location of the slider.
The up-arrow controller tells the model to increase the int value, and the
down-arrow controller calls the model’s method to decrease the value. It is
then the model’s responsibility to update the data and notify listeners or
views interested in the recently changed data. Figure 11.8 provides a visual
representation of each MVC component within a scrollbar.

F I G U R E 1 1 . 8 MVC within a scrollbar

Model
int value = 1;

View

Controller Controller

http://www.sybex.com

Model View Controller Pattern 439

The class that handles the visual presentation is notified of a change and is
able to repaint the image to correctly represent the current data. In this case,
the slider would be repositioned to represent the increase or decrease in value.

The benefits you gain from creating three classes, rather than two or one,
are as follows:

� Changes to the controller do not affect any view classes.

� Changes to the view do not affect any controller classes.

� You can add additional view or controller classes without affecting
existing code.

By removing the data from the graphical components and by separating
these components into two categories, one that controls and one that dis-
plays, you create an application environment that is easily extensible.

The order of operations is as follows:

1. When the controller is triggered, it communicates a change to the
model.

2. The model makes a change to the data and pushes the new data to the
appropriate views.

3. The view receives the new data and displays the new image or form.

In a J2EE environment, JSPs or servlets are often used to communicate
server content graphically to the client. There are two defined model types
used to determine which class is the controller:

Model 1 The Model 1 design places client control in the hands of JSPs.
Basically, the controller is a JSP, usually managed by using custom tags,
and the view is also a JSP.

Model 2 The Model 2 design is currently the favored approach because
it assigns roles based on the purpose of the component. Because servlets
are better suited for handling Java coding logic, they fit nicely into the role
of controller. JSPs, on the other hand, are designed to focus on presenta-
tion. Consequently, they represent the view.

In both strategies, the model is not specified, because it can be any number
of components, such as a component on the Web tier side, or EJBs. Given the
design patterns we have presented in this chapter, the business delegate
object is often an ideal candidate for the model role.

http://www.sybex.com

440 Chapter 11 � Web Tier Design Patterns

Imagine a basic web application that requires the client to log in prior to
accessing their account information. An MVC implementation of that design
might look similar to the general layout of Figure 11.9.

In Figure 11.9, the login.jsp page is a view that communicates with an
AuthenticationServlet to determine whether the user is valid. The servlet
corresponds with the model (step 1), which might invoke a session or entity
bean to check the information against the database (step 2). If the user is
valid, two things can happen: either the model pushes the response to the view
(step 3a), ending one cycle, or the model returns the response to the original
controller (step 3b). Most commonly, the model returns the response to
the controller, and the controller then forwards it to the view (step 4). The
welcome.jsp view is then displayed with the user’s name and necessary
information. If authentication failed, a loginAgain.jsp view would appear.
The process cycles until the user successfully logs in or ends the session.

F I G U R E 1 1 . 9 J2EE MVC

You might want the underlying controller to be a servlet so that you can:

� Control authentication

� Handle application-specific logging

� Access a database

� Process requests

� Utilize the Java debugger

When a process requires a lot of Java code, embedding it within a JSP
object can make the resulting application difficult to read, making it hard to
develop, debug, and maintain. Often your choice is to either use a servlet or,
if you feel the need to utilize only JSPs (Model 1), create a custom tags. Either
approach is functionally acceptable.

Business
delegate

Authentication
Servlet.java

welcome.jsp

login.jsp

Business
services

Data source

1

3b

3a

Database

Web
server

Browser

Model

Controller

View

Application
server

2

4

http://www.sybex.com

Model View Controller Pattern 441

Separating controller and view often requires JSPs to communicate with
servlets and servlets to communicate with JSPs. Next, we will cover how
these two entities exchange information.

JSP to Servlet

For a JSP component to communicate with a servlet is a simple task. It
requires the use of a bean, which stores the information that is transferred
from one to the other. Consider the following components:

� A JSP page: login.jsp

� A bean: UserInfoBean.java

� A servlet: AuthenticationServlet.java

Let’s first look at how the JSP page (login.jsp) sets up the data to trans-
fer to the servlet:

<jsp:useBean id=”userInfo” scope=”request”

 class=”com.syb.jsp.beans.userinfo.UserInfoBean”>

 <jsp:setProperty name=”userInfo” property=”*” />

</jsp:useBean>

<jsp:forward page=”/AuthenticationServlet” />

When this section of code is read by the interpreter, a bean instance
called userInfo is either retrieved or created. As you might remember from
Chapter 9, “Java Server Pages (JSPs),” the jsp:setProperty action uses
reflection to link and change all bean attributes to match the values gener-
ated from the request. After the JSP creates the bean with all the necessary
information, it forwards it to the servlet.

It is now up to the AuthenticationServlet to use this bean and extract its
information obtained from the request. Consider the following pseudo-code:

public class AuthenticationSerlvet extends HttpServlet {

…

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 UserInfoBean userInfo =

 (UserInfoBean)request.getAttribute(“userInfo”);

http://www.sybex.com

442 Chapter 11 � Web Tier Design Patterns

 // Access the bean’s get methods to extract its data

 String name = userInfo.getLoginName();

 String pwd = userInfo.getPassword();

 // Use the model handle (made available from another

 // method) to access and authenticate the bean.

 boolean status = model.validateUser(loginName, pwd);

 if (status == true) {

 // forward to the next JSP page in the application

 } else {

 // forward to a “login failed, try again” JSP.

 }

 }

}

After the information from the bean is extracted, the servlet acts like a
controller and requests that the model perform a validation. The model then
determines whether the user is valid. Depending on the design, the model can
either return a boolean to the AuthenticationServlet to determine where
to forward the request/response, or the model itself can handle this task. In
our example, the model passes forwarding responsibility back to the servlet.
Now let’s look at how the servlet communicates with JSPs.

Servlet to JSP

In order for a controller to push data forward to a view, the servlet must
communicate with a JSP. As covered in Chapter 2, “The Servlet Model,” the
RequestDispatcher can be used to forward the response generation to
another servlet or JSP. To demonstrate this concept, we will build on the
AuthenticationServlet. In this interpretation, we explicitly show you
how the servlet accesses the model or delegate called Delegate.java.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class AuthenticateServlet extends HttpServlet {

 public void init() throws ServletException{

http://www.sybex.com

Model View Controller Pattern 443

 Delegate model = new Delegate();

 ServletContext context=

 getServletConfig().getServletContext();

 context.setAttribute(“delegate”, model);

 }

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 UserInfoBean userInfo =

 (UserInfoBean)req.getAttribute(“userInfo”);

 String name = userInfo.getLoginName();

 String pwd = userInfo.getPassword();

 ServletContext context=

 getServletConfig().getServletContext();

 Delegate model=

 (Delegate)context.getAttribute(“delegate”);

 boolean status = model.validateUser(name, pwd);

 if(status==true) {

 RequestDispatcher disp=

 req.getRequestDispatcher(“/app/Welcome.jsp”);

 disp.forward(req, res);

 } else {

 RequestDispatcher disp=

 req.getRequestDispatcher(“/app/loginAgain.jsp”);

 disp.forward(req, res);

 }

 }

}

The AuthenticateServlet.java (controller) file creates a Delegate
object when the class is first initialized by the web container. When a login
request is made, the controller accesses the delegate and asks it to validate
the user. Depending on the response, the request is forwarded to the appro-
priate JSP (or view).

http://www.sybex.com

444 Chapter 11 � Web Tier Design Patterns

Advantages and Disadvantages

MVC is one of the most popular design patterns and is being utilized when-
ever possible. From a managerial perspective, the benefits are great and the
problems minor, if any.

Advantages

Like the Business Delegate pattern, MVC requires more work up front, but
provides several long-term benefits. They include:

Provides job separation Web designers can focus on creating graphic
presentations through JSPs, while code developers can generate code to
perform tasks using servlets.

Improves code manageability Because each task is contained within its
own object, it is easy to locate and determine where a problem exists. This
decreases the time needed to fix errors or expand the code.

Disadvantages

Any pattern that is not used correctly can actually cause the problems you
are attempting to correct. Here is one disadvantage to this pattern:

Adds complexity Once again, the addition of objects means there are
more classes to handle. However, if the application is carefully designed,
this problem is negligible.

The pattern does require more work and careful planning, but that is
usually the sign of a good application.

Justifying the Need for a Robust System

Skeptical investors for a new startup company, ePayroll Inc., recently
requested that the company provide an application design that models the
web application they wish to develop. The application is intended to enable
businesses to enter their payroll over the Internet. The developers justified
the need to develop the following components:

EJBs Given the need for strict security, data integrity, and use of external
resources, enterprise beans offer a way to manage these issues through the
application server without requiring developers to write code to handle
these issues

http://www.sybex.com

Summary 445

Summary

In this chapter, we covered the four main design patterns:

The Value Object pattern is a data object used to reduce code dupli-
cation and traffic. By creating an object containing all the necessary
data, a single call for the object can be made rather than multiple calls
for the same data.

Benefits:

� Reduces network traffic

� Reduces code duplication

� Enables concurrent access and transactions

The Data Access Object pattern is used to decouple a business object’s
code and that used to access a storage system. By separating the
two, it is easier to maintain the code if storage system changes are
required.

Benefits:

� Hides data access implementation code

Value objects To reduce the number of network calls, value objects
should be used to contain groups of related data.

Data access objects As the business expands and technology improves,
there is a strong chance that there will be a need to upgrade the back-end
data storage system. These objects will ensure a smooth transition.

A delegate Because their groups of developers are specialized in specific
areas, the Delegate model enables one person to manage the link between
web and server components.

Views Web application designers can focus on developing an aestheti-
cally pleasing interface, without having to be trained in Java programming.

Controllers Their strong team of Java programmers can help develop
front-end components.

http://www.sybex.com

446 Chapter 11 � Web Tier Design Patterns

� Eliminates code dependencies

� Improves code readability and development productivity

The Business Delegate pattern places a layer between the Web and
Server tiers to limit the number of dependencies between the two.

Benefits:

� Improves code manageability

� Provides easier exception handling

� Offers a more simple business service API

� Improves performance

The MVC pattern separates web components used to control the
application versus those components designed to display information.
The application is more flexible and expandable as a result.

Benefits:

� Provides job separation

� Improves code manageablity

Exam Essentials

Given a list of architectural issues, be able to select the appropriate design
pattern to solve the problems. The Value Object and Data Access Object
design patterns help modularize server-side code to improve manageability
and expandability—whereas the Model View Controller pattern is used to
produce the same result for client-side code. Architecturally, the Business
Delegate places a layer between the Web and Server tiers to eliminate any
dependencies.

Be able to identify the benefits associated with any one of the following
design patterns: Value Object, MVC, Data Access Object, or Business
Delegate. Knowing the benefits associated with each pattern will help
you determine which pattern is appropriate for a given scenario.

http://www.sybex.com

Key Terms 447

Key Terms

Before you take the exam, be certain you are familiar with the follow-
ing terms:

application server extensible

Automatic Code Generated Data
Access Object strategy

factory

Business Delegate layer Factory for Data Access Object
strategy

Business Delegate pattern isolation level

business object Model View Controller (MVC)
pattern

business service Multiple Value Objects strategy

data access object (DAO) mutable

Data Access Object (DAO) pattern session beans

Delegate Adapter strategy updateable

Delegate Proxy strategy Updateable (or Mutable) Value
Object strategy

design patterns Value Object Factory strategy

Enterprise Java Beans Value Object pattern

entity bean value object

Entity Inherits Value Object
strategy

http://www.sybex.com

448 Chapter 11 � Web Tier Design Patterns

Review Questions

1. Which of the following design patterns is used to limit the amount of
network traffic necessary to transfer data?

A. Business Delegate

B. Data Access Object

C. Value Object

D. Model View Controller

2. If your company is likely to change their EIS tier within the next year,
what pattern would you recommend utilizing to minimize the amount
of change the application will need to endure?

A. Business Delegate

B. Data Access Object

C. Value Object

D. Model View Controller

3. Which pattern(s) are used to isolate tasks? (Choose all that apply.)

A. Business Delegate

B. Data Access Object

C. Value Object

D. Model View Controller

4. Which pattern helps eliminate code duplication?

A. Business Delegate

B. Data Access Object

C. Value Object

D. Model View Controller

5. Which pattern is known for encouraging job separation for web
designers and Java programmers?

http://www.sybex.com

Review Questions 449

A. Business Delegate

B. Data Access Object

C. Value Object

D. Model View Controller

6. If your current application exposes business services to the client,
what pattern could you recommend to alleviate this problem?

A. Business Delegate

B. Data Access Object

C. Value Object

D. Model View Controller

7. Which strategy enables an application to switch between EIS systems
with the least modifications to existing code?

A. Basic Data Access Object

B. Automatic Code Generated Data Access Object

C. Factory for Data Access Object

D. None of the above

8. Some web developers have been expressing concern over having to
handle EJBExceptions. Because they lack an understanding of EJB
architecture, they are unable to determine the appropriate action.
What pattern can be used to help resolve this problem?

A. Business Delegate

B. Data Access Object

C. Value Object

D. Model View Controller

9. Which pattern(s) help improve code manageability? (Choose all that
apply.)

http://www.sybex.com

450 Chapter 11 � Web Tier Design Patterns

A. Business Delegate

B. Data Access Object

C. Value Object

D. Model View Controller

10. Which pattern reduces the size of objects by providing public data
members?

A. Business Delegate

B. Data Access Object

C. Value Object

D. Model View Controller

11. Which pattern can use a tool to help generate the embedded code?

A. Business Delegate

B. Data Access Object

C. Value Object

D. Model View Controller

12. A company is told that they have access to five web designers and two
Java programmers. What design pattern should they consider when
developing their graphics-intensive web application?

A. Business Delegate

B. Data Access Object

C. Value Object

D. Model View Controller

13. You are told that your company’s current two systems do not use the
same integration language but they need to communicate. Which
pattern could solve this problem?

A. Business Delegate

B. Data Access Object

C. Value Object

D. Model View Controller

http://www.sybex.com

Review Questions 451

14. Which pattern can be used to hide SQL database commands?

A. Business Delegate

B. Data Access Object

C. Value Object

D. Model View Controller

15. Which of the following patterns uses accessor and mutator methods to
reduce the number of network calls needed to alter or access data?

A. Business Delegate

B. Data Access Object

C. Value Object

D. Model View Controller

http://www.sybex.com

452 Chapter 11 � Web Tier Design Patterns

Answers to Review Questions

1. C. A value object contains data that can be transferred in one call.

2. B. Using Data Access objects enables J2EE applications to swap out the
EIS tier without requiring much change to code. If done correctly,
the only change is made to the Data Access objects themselves.

3. A, B, D. All three patterns isolate tasks. The Business Delegate
isolates the Web tier from the Server tier; Data Access Object isolates
database communication from business objects; MVC isolates the
controller code from presentation code.

4. C. When using the Entity Inherits Value Object strategy, there is no
need to define the value data in the value object and entity bean.

5. D. MVC separates the controller code, which is developed by using
servlets, from the presentation code, which is developed by using JSPs.
The skill set used to create the two is different. A web designer can
create JSPs with ease, whereas programmers are better suited to focus
on functionality, such as that handled by a servlet.

6. A. The Business Delegate places a layer between the client and the
business services. This prevents the client from dealing with access and
lookup issues to utilize the server.

7. C. The factory strategy simply requires access classes to be added to
the current list of DAO objects. Existing code is left untouched.

8. A. Including a Business Delegate enables exceptions to be intercepted
before reaching web components. The delegate can then send a
user-friendly application an exception to help web developers better
understand the problem.

9. A, B, C, D. All four patterns separate tasks into individual classes.
This is the key to code manageability. Problems can be located easily,
and changes have minimal, if any, effect on other classes.

10. C. One strategy of the Value Object class is to provide public
members, thus removing the need to have get or set methods.

11. B. Third-party or Java’s reflection tools can be used to introspect a
database or data source to generate code for data access objects.

http://www.sybex.com

Answers to Review Questions 453

12. D. Although this situation isn’t ideal, the web designers can be thor-
oughly utilized to generate appealing view components. The developers,
on the other hand, can deal with controller and back-end components.

13. A. The Adapter Delegate strategy can be used to translate between
two systems. One system can write to the delegate, which can interpret
the request and then communicate it to the appropriate source.

14. B. Data access objects hide all SQL implementation. Instead of
including database-specific code within a business object, it is placed
within a DAO.

15. C. The Value Object can contain “get” and “set” methods to access
or change its member variables. These methods are used locally rather
than over the network.

http://www.sybex.com

Practice Exam

http://www.sybex.com

456

Practice Exam

1.

Which HTTP method is guaranteed to

not

 return a response body?

A.

GET

B.

POST

C.

PUT

D.

STORE

E.

HEAD

2.

Which of the following HTTP types contains the defined protocol,
status code, method type, header information, and body?

A.

HTTP request

B.

HTTP response

C.

HTTP protocol

D.

None of the above

3.

Which of the following best describes the purpose of an

Accept

header tag?

A.

Specifies the acceptable length of a response

B.

Specifies the acceptable protocol types for the response

C.

Specifies the acceptable media types for the response

D.

None of the above

4.

The non-deprecated method

getRealPath(

String path

)

 is found in
which of the following interfaces?

A.

HttpSession

B.

ServletContext

C.

ServletConfig

D.

HttpServletRequest

5.

Which of the following is considered a convenience method for servlet
initialization?

http://www.sybex.com

Practice Exam

457

A.

public void init(

ServletConfig config

) throws
ServletException

B.

public void init(

ServletContext con

) throws
ServletException

C.

public void init() throws Exception

D.

public void init() throws ServletException

6.

If a servlet has only a

doGet(…)

 method, which of the following meth-
ods will be called if a

HEAD

 request is sent?

A.

doGet(…)

B.

doHead(…)

C.

doGets(…)

D.

doOptions(…)

7.

Given the following request, what result would you expect from the
following method call?

GET /Register/index.html HTTP/1.0

Date: Fri, 26 Oct 2001 17:12:10 GMT

User-Agent: Mozilla/4.75[en](Windows NT 5.0; U)

Accept: image/gif, image/x-xbitmap, image/jpeg, */*

Host: educationaledge.net

Accept-Encoding: gzip, deflate

req.getHeaders(“Accept-Encoding”);

A.

A string representing

gzip, deflate

B.

A string array representing

gzip, deflate

C.

A string representing

gzip

D.

A string representing

/

8.

Given the following code example, what result would you expect?
(Assume a servlet called

Test

 takes a forward

request

 and

response

object to generate a response.)

http://www.sybex.com

458

Practice Exam

import java.io;

import javax.servlet.*;

import javax.servlet.http.*;

public class PassMessageServlet extends HttpServlet {

 public void doGet(HttpServletRequest req,
HttpServletResponse res) throws ServletException,
IOException {

 res.setContentType(“text/plain”);

 PrintWriter out = res.getWriter();

 out.println("This is a test");

 out.close();

 RequestDispatcher disp=

 req.getRequestDispatcher("/servlet/Test");

 disp.forward(req, res);

 }

}

A.

The code does not compile.

B.

The code compiles but throws an

IllegalStateException

.

C.

The code compiles and runs without problems.

D.

None of the above.

9.

Which of the following tags is used to identify welcome pages for the
root of a website, but not its subdirectories?

A.

welcome-file-name

B.

welcome-root-file

C.

welcome-file

D.

None of the above

10.

The

session-timeout

 tag identifies time in which format?

A.

Seconds

B.

Milliseconds

C.

Minutes

D.

Hours

http://www.sybex.com

Practice Exam

459

11.

If a single container has 10 web applications running, how many
contexts does it have?

A.

10

B.

5

C.

1

D.

Depends

12.

Which of the following commands would best create a WAR file for
a web application whose context is defined as

/webapps/stocks

?

A.

jar -tvf stockApp.war /webapps/stocks

B.

jar -cvf stockApp.war /webapps/stocks

C.

war -cvf stockApp.war /webapps/stocks

D.

jar -cvf stockApp.war /webapps/

E.

Both

war -cvf stockApp.war /webapps/stocks

 and

jar -cvf
stockApp.war /webapps/

13. Which of the following methods is not available for an HttpSession
object?

A. removeAttribute(String name)

B. setAttribute(String name, Object value)

C. getAttribute(String name)

D. log(String msg)

14. Which of the following listeners is used to transfer sessions between
servers?

A. HttpSessionAttributeListener

B. HttpSessionListener

C. HttpSessionBindingListener

D. HttpSessionTransferListener

E. HttpSessionActivationListener

http://www.sybex.com

460 Practice Exam

15. What tag is used to indicate whether an application can be applied to
multiple machines?

A. <cluster>

B. <distribute></distribute>

C. <distributable/>

D. <cluster/>

16. When are listener objects notified? (Choose all that apply.)

A. When servlet contexts are initialized or destroyed

B. When sessions are initialized or destroyed

C. When attributes are added or removed from a context

D. When attributes are added or removed from a session

E. None of the above

17. With regard to the setStatus(…) method, which of the following
statements is false?

A. The developer is completely responsible for generating a response
for error codes.

B. An error page is not used for status codes in the 200 level.

C. It is preferable to set errors by using the sendError(…) method.

D. When setting the status to an error code, the server continues
to read the code without attempting to find an associated
error page.

18. Which of the following servlet methods does not throw an
IOException? (Choose all that apply.)

A. destroy()

B. init(…)

C. doPost(…)

D. doGet(…)

http://www.sybex.com

Practice Exam 461

19. Select all appropriate constructors for an UnavailableException.
(Choose all that apply.)

A. UnavailableException()

B. UnavailableException(String msg)

C. UnavailableException(Throwable t)

D. UnavailableException(String msg, int sec)

E. UnavailableException(String msg, long sec)

20. Which of the following statements is used to retrieve a session object
across multiple requests to the same or different servlets within the
same WebApp?

A. request.getContext().getSession();

B. response.getContext().getSession();

C. request.getSession();

D. response.getSession();

21. The setAttribute(…) method for session objects is located in which
of the following classes or interfaces?

A. Session

B. HttpSession

C. ContextSession

D. None of the above

22. Which of the following is a valid value for the session-timeout tag?
(Choose all that apply.)

A. 10.5

B. 100

C. -1

D. All of the above

http://www.sybex.com

462 Practice Exam

23. Which of the following methods is called when an object is added to
a session?

A. valueBound(HttpSessionEvent e)

B. attributeAdded(HttpSession e)

C. attributedAdded(HttpSessionEvent e)

D. valueBound(HttpSessionBindingEvent e)

24. Which of the following HTML tags is used to define a hidden data
element?

A. INPUT TYPE

B. COMPONENT

C. HIDDEN

D. VALUE

25. Which of the following services requires a user’s login name?

A. Identification

B. Authentication

C. Access control

D. Data confidentiality

26. In which order must the following elements be defined?

A. login-config, security-role, security-constraint

B. security-constraint, login-config, security-role

C. security-role, security-constraint, login-config

D. Order does not matter

27. Which of the following authentication types cannot be used for the
auth-method element?

A. Basic

B. DIGEST

C. CLIENT-CERT

D. None of the above

http://www.sybex.com

Practice Exam 463

28. Which of the following methods is not defined within the Filter
interface?

A. public void doFilter(ServletRequest req,
ServletResponse resp)

B. public void destroy()

C. public void init(FilterConfig config)

D. None of the above

29. Which of the following variables is defined by using the keyword
static?

A. Instance variable

B. Local variable

C. Class variable

D. Request attribute

30. Which of the following attributes is associated to a ServletRequest
object using the setAttribute(String key, Object obj) method?

A. Request attributes

B. Session attributes

C. Context attributes

D. None of the above

31. What is the name of the interface used to guarantee that no two
threads will access a servlet’s service method concurrently?

A. ThreadedModel

B. SingleThreadedModel

C. SingleModel

D. SingleThreadModel

http://www.sybex.com

464 Practice Exam

32. A SingleThreadModel servlet does not provide thread safety with
respect to which of the following?

A. Instance variables

B. Class variables

C. Session attributes

D. Request attributes

33. A translated JSP can implement which of the following interfaces?
(Choose all that apply.)

A. javax.servlet.jsp.JspPage

B. javax.servlet.jsp.HttpJspPage

C. javax.jsp.HttpJspPage

D. javax.jsp.JSPpage

34. Which of the following code types cannot be used within a
scriptlet tag?

A. if block

B. while block

C. Code block

D. Static block

35. Given the following XML statement, which of the following tags best
describes the remaining portion of the web.xml file?

<!DOCTYPE web-app3 PUBLIC “-//SUM Microsystems, Inc.
 //DTD Web Application 2.3//EN” “http://java.sun.com
 /j2ee/dtds/web-app_2_3.dtd”>

A. <servlet></servlet>

B. <web-app3></web-app3>

C. <web-app></web-app>

D. <welcome-file-list></welcome-file-list>

http://www.sybex.com

Practice Exam 465

36. Which of the following packages is not implicitly imported in a
JSP page?

A. java.lang

B. javax.servlet

C. javax.servlet.jsp

D. None of the above

37. Which of the following elements is used correctly?

A. <jsp:useBean name=“theBean” code=“SpecialBean.class”>

B. <jsp:forward page=“message.jsp” />
 <jsp:param name=“number” value=“5” />

C. <jsp:include page=“test.jsp” flush=“true”/>

D. None of the above

38. Which of the following JSP elements is used correctly?

A. <jsp:useBean id=“bean” scope=“package” class=“MyBean”
/>

B. <jsp:useBean id=“bean” beanName=“a.b.c” type=“Object”
/>

C. <jsp:useBean id=“bean” scope=“session”>
 <jsp:setProperty name=“Bean” property=“*” />

D. <jsp:useBean id=“bean” scope=“context” />
 <jsp:setProperty name=“bean” property=“number”
 value=“one” />

39. All implicit objects are bound to which of the following objects?

A. context

B. config

C. page

D. pageContext

http://www.sybex.com

466 Practice Exam

40. Which object is directly used to acquire information on the JSP engine
being used?

A. config

B. pageContext

C. session

D. application

41. Which option is false regarding the following JSP statement?

<%@ taglib uri="/tlds/select.tld" prefix="select" %>

A. Allows custom tags to be used throughout the JSP from the select
tag library.

B. Requires that a select.tld reside in the deployed /WEB-INF
/tlds directory.

C. Implies a class implementing javax.servlet.jsp.tagext.Tag
exists that can be called in the page from a JSP custom tag.

D. Tags from this library are referenced by using the prefix name
select.

42. Where would you expect the following tag declaration to appear?

<taglib-uri>/taglib</taglib-uri>

A. Web application

B. TLD

C. DTD

D. Custom tag class

43. Which of the following constants indicates that a variable is accessible
from the start of the action tag until the end action’s scope?

A. VariableInfo.NESTED

B. VariableInfo.ALL

C. VariableInfo.BODY

D. VariableInfo.AT_BEGIN

http://www.sybex.com

Practice Exam 467

44. Given a custom tag library with a short-name of math, and a tag with
the name of calculate, which of the following options best displays
an empty custom tag? Choose all that apply.

A. <math:calculate />

B. <calculate:math>
 4 + 4
</calculate:math>

C. <math:calculate />
</math:calculate>

D. <math:calculate>
</math:calculate>

45. What is the default return value for the TagSupport doAfterBody(…)
method?

A. EVAL_BODY

B. EVAL_BODY_INCLUDE

C. EVAL_BODY_AGAIN

D. SKIP_BODY

46. Identify the tag library descriptor element used to define the suffix
name of a custom action.

A. name

B. tagname

C. tagName

D. taglib-name

47. Which of the following statements best resembles a directive?

A. <%! … %>

B. <%= … %>

C. <%@ … %>

D. <% … %>

http://www.sybex.com

468 Practice Exam

48. Which of the following design patterns is used to separate developers
from web designers’ roles?

A. MVC

B. Value Object

C. Data Access Object

D. MVC and Data Access Objects

49. Your current application needs to be extensible and flexible to changes
in the data-source implementation. Which of the following design
patterns will you implement to ensure meeting these requirements?

A. MVC

B. Value Object

C. Data Access Object

D. Facade

50. Which of the following design patterns is likely to have only
constructor and accessor methods?

A. MVC

B. Value Object

C. Data Access Object

D. None of the above

http://www.sybex.com

Answers to Practice Exam 469

Answers to Practice Exam

1. E. A HEAD method request will return only the header informa-
tion from the response. GET and POST usually return the requested
information in the body of the response. PUT can return a body
to indicate whether the request was successful. STORE is an invalid
request type.

2. D. An HTTP response contains a defined protocol, status code, and
description, plus header data and an optional body. An HTTP request
contains the method type, header information, parameters, and body,
but not the status code or protocol. HTTP protocol is not a valid
object. None of the options contains all the listed elements.

3. C. The Accept tag is found in a request. An HTTP request begins
with a request line, which defines the action that is being desired by the
server. It can then contain a header and body.

4. B. The method getRealPath(String path) is found in both the
ServletRequest interface and the ServletContext interface. It has,
however, been deprecated in the ServletRequest interface, as of
version 2.1 of the Java servlet API.

5. D. The convenience method for initializing a servlet takes in no argu-
ments. It ensures that the init(ServletConfig config) method will
be called, but it saves the developer the burden of making a call to
super.init(config). The third option fails because an overriding
method cannot throw an exception that the parent class method does
not throw. A subclass would work, but not a superclass.

6. B. New to the 2.3 specification is the addition of the doHead(…)
method. Its default implementation method is now called instead of
the doGet(…) method.

7. B. The getHeaders() method parses through each value and returns
the result as an array.

8. B. The code compiles because syntactically nothing is wrong. It does
not run, however. A forward(…) cannot be called if a response has
been committed. Calling close() commits the response.

http://www.sybex.com

470 Answers to Practice Exam

9. D. There is no tag used to identify only the root welcome page for an
application. Consequently, none of options provided are suitable. Some
people might assume that the welcome-file tag is the correct answer,
but it is not, because it identifies files for the root and its subdirectories.

10. C. The session-timeout tag identifies the maximum number of
minutes an inactive HttpSession can exist before the container can
consider removing it from memory.

11. A. For every web application, there must be a unique context path
defined.

12. B. The command that can be used to compress files and create a
proper WAR file is jar. The c option compresses the defined directory
and any subdirectories, whereas a t option displays only its contents.

13. D. Logging messages is a feature of the a ServletContext object,
not an HttpSession object. Both enable you to get, set, and remove
attributes.

14. E. The HttpSessionActivationListener is called when a session
is about to be passivated to move it to another server, and when a ses-
sion is about to be activated to bring it back to life on the new server.

15. C. The <distributable/> tag is an identifier that tells the server
that the application should be run from multiple systems if the server
supports that functionality.

16. A, B, C, D. When a context is initialized or destroyed, the
ServletContextListener is notified. When sessions are
initialized or destroyed, the HttpSessionListener is notified.
Finally, the HttpSessionAttributeListener and the
ServletContextAttributeListener are notified when changes
to their attributes occur.

17. D. When setStatus(…) is called, the response is the responsibility
of the developer. If the value is set to an error code, the server will look
to find an associated error page. If one is not found, the server will halt
the program and display a message indicating an error page could not
be found.

18. A, B. The destroy() method does not throw any exceptions in it sig-
nature, ands the init(…) method throws only the ServletException.

http://www.sybex.com

Answers to Practice Exam 471

19. B, D. An UnavailabeException can be created in two ways. The
first is with a message to identify that the servlet is permanently
unavailable. The second is with a message and an integer defining the
estimated time the servlet is temporarily unavailable. No default con-
structor exists.

20. C. The HttpServletRequest object provides the servlet access to
the current client session. The client will use the same session object
for multiple requests until the session is terminated.

21. B. The only legal interface name provided is HttpSession. Within
that interface, the “set/get” attribute methods provide a way to add
data to the client session object.

22. B, C. Whole values must be used to define the session-timeout tag
as specified by the servlet specification. Negative values can be used to
indicate that sessions will not be terminated.

23. D. The valueBound(…) method is called when an object is bound to
a session object. The HttpSessionBindingEvent is passed and con-
tains the session, name, and value object.

24. A. The INPUT TYPE tag defines the type of component being used. It
can be a text field represented as text or a hidden data element rep-
resented by a hidden value.

25. A. During the identification phase, a user presents themselves as a
principal by identifying themselves using a user ID or login name.

26. B. The order for security tags is critical. You must first define the
security-constraint, which protects the servlet, and its method.
The login-config is next. This tag defines the type of authorization
and realm. Finally, the security-role is used to explain which roles
can access the protected code.

27. A. The entries within the web.xml form are case sensitive. Conse-
quently, “Basic” is not recognized as a valid authentication type.

28. A. The doFilter(…) method takes three agreement: ServletRequest,
ServletResponse, and FilterChain.

29. C. Class variables are shared among all instances of a servlet and are
defined under the class name by using the keyword static.

http://www.sybex.com

472 Answers to Practice Exam

30. A. Request attributes are applied to a request object using the
setAttribute(…) method. The first argument is the key name used
to identify the object defined as the second argument.

31. D. The interface name is SingleThreadModel. When implemented,
the container manages the life cycle of that servlet differently. Either the
container will synchronize the service method or a pool of instances will
be provided.

32. B. The SingleThreadModel does not prevent synchronization prob-
lems when threads access shared resources such as static class variables.
Instance variables are safe if the container pools instances. Both session
and request attributes are also safe by design.

33. A, B. When a JSP page is translated to servlet source code, the class
generated can implement either the javax.servlet.jsp.JspPage or
javax.servlet.jsp.HttpJspPage interface.

34. D. By nature, static blocks are read when a class is loaded into
memory. Because scriptlets are embedded within the service method,
including a static block within a method breaches Java coding rules.

35. B. The DOCTYPE tag defines the root element of the deployment
descriptor. In this example, the root is specified as web-app3. Conse-
quently, the DTD must encompass all resources and configuration
settings within the tags <web-app3> and </web-app3>.

36. D. Four packages are automatically imported into a JSP page. The
include java.lang.*, javax.servlet.*, javax.servlet.jsp.*,
and javax.servlet.http.*.

37. C. The first option fails because name is not an attribute of the
jsp:useBean element. A better choice would be id. The second
option fails because the jsp:forward tag is closed with a /> when it
should close with a </jsp:forward> tag because a parameter is being
defined. The third option is correct because it follows the attribute
rules of the jsp:include element.

38. B. The first and last options fail because package and context are not
valid scope values. The third option fails because the setProperty
name and useBean ID must match, even with casing. Finally, the second
option is correct because the bean name can represent a class or a
serialized resource in which the value would be resolved as a/b/c.ser.

http://www.sybex.com

Answers to Practice Exam 473

39. D. All implicit objects are bound to the pageContext because it han-
dles their namespaces. The pageContext object provides a handle to
all other objects. Through the methods getOut(), getException(),
getPage(), getRequest(), getResponse(), getSession(),
getServletConfig(), and getServletContext(), you can obtain
access to each object.

40. D. The ServletContext, known as the application object, is used
to provide information general to the entire web application. The JSP
engine running the code is available via the getServerInfo() method
of this class.

41. B. After a taglib directive is defined within a JSP page, all custom
tags within that library are available to the page. The tags can be
accessed by using the select prefix, and each custom tag implements
the Tag interface. The second option is incorrect because the library
file can be located in any directory specified by the taglib-location
directive in the web.xml file.

42. C. The JSP page uses the web.xml file to locate the tag library it looks
to load. The taglib-uri element maps directly to the <%@ taglib
uri… %> directive defined within the page.

43. D. A NESTED scope indicates that the variable is available between
the start and end tags. This is different from an AT_BEGIN scope,
which states that the variable is accessible from the beginning tag until
the action is no longer in scope.

44. A, D. An empty tag has no body. You can create either a single open-
ing tag that terminates with a forward slash, or an opening and closing
tag with nothing in between.

45. D. By default, the doAfterBody(…) method returns the constant
SKIP_BODY.

46. A. When the custom action is invoked, a prefix is used to generalize
which library is being used, and the suffix is the value assigned to the
element name.

47. C. Directives are denoted with an at (@) sign. An exclamation point
marks a declaration, whereas an equal sign is used for expressions.
Finally, a percent sign alone is for scriptlets.

http://www.sybex.com

474 Answers to Practice Exam

48. A. By separating development of the controller (the servlet) and the
view (the JSP), you can use MVC to enable individuals who are skilled
in a particular area to focus on developing within their skill set.

49. C. By separating the data-source implementation into unique data
access objects, you can easily swap out DAO objects when the data
source is changed, without affecting other code.

50. B. The Value Object design pattern can create objects by using the con-
structor and provide only accessor methods. Without mutator methods,
the user must reconstruct the object when changes have to be made.

http://www.sybex.com

Glossary

http://www.sybex.com

476

Glossary

A

absolute path

The full path, starting with the protocol and host, neces-
sary to locate the tag library file.

access list

Sometimes it’s a simple file containing each user’s login name,
password, and role. Other times it’s stored as a database with encrypted
employee information.

actions

Java tags that affect the runtime behavior of the JSP.

application

See “

application

 object.”

application

 object

An implicit object that represents the

ServletContext

object. It provides a set of methods to communicate with the container.

application scope

Indicates that objects are available for the life of
the application.

application server

A vendor product that, at a minimum, adheres to the
EJB specification to provide support for the various forms of EJBs.

attackers

See “hackers.”

attribute

A name/value pair associated with a request.

authentication

The process whereby the client supplies credentials to
prove their identity. Most often proof is provided via a password. Other
examples include the swipe of a card, retinal scans, fingerprints, or digital
certificates located on the user’s system.

authorization

A process whereby a client makes a claim to be a partic-
ular user.

Automatic Code Generated Data Access Object strategy

A strategy in
which a tool or resource generates the code needed for a DAO object to com-
municate with a data source.

B

base class

A support class that offers basic functionality for new tag
handlers.

http://www.sybex.com

Glossary

477

body content

The content between the opening tag and closing tag,
including subtags.

Business Delegate layer

A layer of code placed between the client and
server to protect the client from experiencing change when alterations are
made to the server code.

Business Delegate pattern

A pattern that prevents the exposure of
all business services to the client.

business object

A client object that requires access to the data source in
order to obtain and store data.

business service

A specific behavior or method(s) performed by a servlet,
JSP, or EJB.

C

certificate authority (CA)

A company that sells certificates to individuals
to enable them to sign their public key.

CHECKED

An attribute used for radio or check-box controls. It’s a boolean
value that identifies whether the control should be selected.

class variables

Variables that are shared among all instances of a servlet.

client certificate

An encrypted object, known as a signature, personalized
with data for a particular person. It provides a secure way to authenticate
users communicating over a network. Instead of simply logging into a system
and providing a password, which can be decrypted, the user provides a
certificate that can be read only by using a special key.

clustering

See “distributable.”

conditional

GET

An entity that can be returned only under specified
circumstances. The request message header contains at least one of the
following fields:

If-Modified-Since

,

If-Unmodified-Since

,

If-Match

,

If-None-Match

, or

If-Range

.

config

 object

An implicit object that is of the

ServletConfig

 data type.
It enables the container to pass information to the JSP page before it is
initialized.

http://www.sybex.com

478

Glossary

container

A software application that exists within an application server
to manage the services associated with a component—including security,
transactions, life-cycle management, pooling, and so on.

content type

Defines the type of content being delivered with the
response object.

context

The root directory containing all files associated with one
application.

context attributes

Global data associated with the

ServletContext

object that is accessible by the entire application.

context object

An object that acts as a reference to the web application.
When a servlet is initialized, the container provides it a handle to the context
object for the servlet to communicate with the container. All servlets within
the application use the single context object to access information about the
container and server in which they reside.

context path

The first section of the path. It defines the

context

 for which
the servlet resides. Within a single Java Virtual Machine, several web appli-
cations might be running. For each web application, there is one context.

context-relative path

A path that starts with a forward slash (

/

) is rela-
tive to the application’s context path.

controls

GUI components that enable the user to interact with the interface.

cookie

An object containing small amounts of information sent by a servlet
to a web browser, then saved by the browser, and later sent back to the server.

custom actions

See “custom tags.”

custom tags

Similar to XML, a custom tag takes the place of scriptlets,
and sometimes beans, to provide the web designer the functionality to
accomplish a particular task.

D

data access object (DAO)

An object containing code used to access and
manipulate a data resource.

http://www.sybex.com

Glossary

479

Data Access Object (DAO) pattern

A design pattern separating the logic
to access a resource into its own separate class. It provides both vendor flex-
ibility and the ability to seize the benefits that a particular vendor can offer.

declaration

Declares Java variables or methods that future Java code can
access within the JSP page.

declarative security

Uses the deployment descriptor to specify which
resource a role can access.

default mapping

A process in which the container provides server con-
tent appropriate for the resource request, such as a default servlet. The string
begins with a forward slash (

/

), and the servlet path is the requested URI
minus the context path. The path info is

null

.

Delegate Adapter strategy

A strategy used when two systems do not use
the same integration language. The adapter knows both languages and acts
as a translator.

Delegate Proxy strategy

A strategy that places a layer between the client
and server, exposing all business methods to the client.

DELETE

 method

A method enabling you to remove a file from a partic-
ular URL.

design pattern

A proven approach to resolving specific programming issues.

digest

A one-directional, encrypted value that represents data.

digital certificate

Attaches identity to a public key. It acts like a driver’s
license or passport in that it proves you are who you claim to be. A certificate
contains your public key and some additional information signed by a third
party’s private key.

digital signature

An object that associates an individual with a particular
piece of data. It adds one more level of security to a digest. Not only does
it provide authentication, but it also links the user to the data. This means
that the request cannot be intercepted, re-signed, and sent by an imposter
without the server realizing the error.

directive

Enables a JSP page to control the overall structure for the trans-
lation phase of the servlet. Directives provide global information independent
of a specific request.

http://www.sybex.com

480

Glossary

distributable

Describes a system that utilizes multiple back-end servers
to distribute processing responsibilities. This technique promotes efficiency
and dependability. By using multiple servers to handle requests, the applica-
tion can manage a large number of simultaneous requests on different systems.
When one machines crashes, requests can be redirected to another server to
keep the application alive.

document type definition (DTD)

A file used to specify the structure of an
XML document and to validate the document.

dynamic error page

An error page that is generated when a problem
occurs and contains information specific to the current problem. Dynamic
pages enable the message, the page, or the data to change depending on the
set error code. Instead of using HTML pages, a servlet could be written to
handle errors.

E

Enterprise Information Systems (EIS)

A generic name for all storage
mechanisms.

Enterprise Java Beans (EJB)

Java classes that implement business ser-
vices and rely on the server to manage their life cycle and architectural
services such as security, transaction management, and persistent data
storage, to name a few.

entity bean

A transactional object that represents persistent data.

Entity Inherits Value Object strategy

A strategy that eliminates code
duplication by having an entity bean extend the value object class.

event

An object that holds data about an activity that took place.

exact mapping

When searching for the URL associated with the requested
file or directory, all strings match exactly.

exception

 object

An implicit object that is an instance of the

java.lang
.Throwable

 class. It represents the uncaught

Throwable

 object that results
in the error page being invoked.

http://www.sybex.com

Glossary

481

exceptions

Objects used to describe the reasons behind a particular
problem. When caught, an exception can be used to resolve, log, and
communicate the problem.

expression

A valid statement of logic used within a JSP page. It indicates
a variable or method invocation whose resulting value is written to the
response output stream.

extensible

Describes a class that can grow without affecting previously
written code.

extension mapping

When searching for the URL associated with the
requested file, an asterisk is used to define the string name, leaving only
the extension as the mapping field.

F

factory

A class that creates instance variables for a specific class type.

Factory for Data Access Object strategy

A strategy designed to have a
class provide DAO objects for a specific data source. An application calls on
the factory to acquire a particular data source DAO instance.

filter

An object that can transform a request or modify a response.

firewall

A security system that blocks network traffic by limiting access
to most ports and unauthorized users. The firewall requires the client to
provide proper authorization to enter the system. Unfortunately, firewalls
are not foolproof: there are ways to bypass security by impersonating
another.

first-person penalty

The delay experienced by the first person accessing a
JSP page. The delay is caused by the container needing to translate the JSP
page to a servlet class.

form

A section of an HTML page that contains various controls

.

forward

 action An action that transfers control of the current request
handler to a specified resource. The target source is then responsible for gen-
erating the response.

http://www.sybex.com

482 Glossary

G

GET method A request designed to retrieve static resources such as an
HTML document or an image from a specific location on the server.

getProperty action An action used to get the parameter values of the
bean in use within a JSP.

H

hackers Individuals who invade systems and either corrupt or capture
vital data.

HEAD method A method resulting in a request that does not return the
entity body. It returns the response line and headers only.

hidden comment Identifies text that should be ignored by the JSP container.

hidden HTML values Values that are not visible to the client and that
enable you to store client data between servlets to use at a later date.

HttpSession An object created by the servlet to maintain data for the entire
duration of a transaction. Assuming the client’s browser supports session
management, an HttpSession object is created when the client first accesses
a web application. Data can then be written to or retrieved from this object.

Hypertext Markup Language (HTML) The intermediary language
between the browser/client and all other technologies, such as Java or
networking protocols.

Hypertext Transfer Protocol (HTTP) The network layer built on top of
Transmission Control Protocol (TCP). HTTP is a stateless protocol—meaning
its data is not retained from one request to the next. After a request is made,
the connection is closed. Because clients are not holding open connections to
a server, the server can have more clients connect over a long period of time.

I

idempotent Describes a request that can be safely repeated without
necessarily consulting the user.

http://www.sybex.com

Glossary 483

immutable Describes a variable that is final and cannot change.

implicit objects A standard set of objects implicitly available to a JSP. These
objects are available to a servlet through methods not available to the JSP.

include action An action used to temporarily transfer control and allow
another resource access to the current request and response objects.

indexed property An object that is either a collection or an array.

instance variables Variables defined within the class body and separately
assigned to each instantiated object.

isolation level Defines the degree of strictness an application will maintain
for data access.

J

Java archive (JAR) file A compressed file containing any combination
of Java classes, such as servlet, JSP, bean and utility classes, used within the
application. JAR files should be stored in the /WEB-INF/lib directory.

Java Server Pages (JSPs) Java objects that communicate between the
client and server, and can also execute business logic. JSPs are optimized for
the layout.

JavaBean A class that contains private data with accessor and mutator
methods.

JSP model The model that utilizes JSP for the graphic presentation of a
web application, leaving servlets to handle or communicate the needs for
business logic.

K

keys Two identifiers generated by a client prior to any login attempts. The
first is a private key that holds the individual’s authentication code and is
stored in a secure location, on a SmartCard or in a file. It should be known
and accessed only by its owner. The second is a public key given to all receivers
to validate the authenticity of the user attempting to log in.

http://www.sybex.com

484 Glossary

L

listener Interfaces that once implemented get notified when specific events
are triggered.

local variables Variables defined within the body of a method.

M

malicious code Synonymous with “virus.”

MAXLENGTH An attribute of the INPUT tag used for the types text and
password to specify the maximum number of characters the user is allowed
to enter.

/META-INF The meta information directory, which contains, at a minimum,
one file named MANIFEST.MF (the manifest file).

Model View Controller (MVC) pattern A pattern that divides the display
logic from the code that causes change.

Multiple Value Objects strategy A strategy that enables the EJB to
create associated value objects with “get” methods to each referenced object.

Multipurpose Internet Mail Extension (MIME) An extension of the
e-mail protocol used to allow the exchange of different kinds of data files
over the Internet.

multithreaded Indicates that a single instance can be accessed by more
than one thread.

mutable Describes a value object that has “set” or mutator methods or
public members.

N

NAME An attribute of the INPUT tag that represents the human-language name
assigned to the control. It is also used to identify the element in the servlet.

nested tags Tags within another tag.

http://www.sybex.com

Glossary 485

nonce A random value that is unique. An example of a nonce could be the
client’s IP address followed by a time stamp and some random data.

non-error A flag that indicates a noncritical problem.

O

OPTIONS method Used to return all supported HTTP methods on the
server. It returns an Allow header and acceptable HTTP methods as values.

out object The implicit object used to write response information to the
client. It is of the class javax.servlet.jsp.JspWriter, which is a buffered
version of the java.io.PrintWriter class.

outer tag A custom action that is not nested within another action.

P

packet sniffer Software that enables you to view all the traffic on your
network.

page attributes Information about the current request stored within
a pageContext object.

page directive Defines attributes that apply to an entire JSP page.

page object An implicit object that is similar to the this keyword in Java.
It represents an instance of the servlet generated by the JSP page for the
current request.

page scope Indicates that an object is available only within the current page.

pageContext object An implicit object that provides the JSP with infor-
mation about the current request.

page-relative path A path that does not start with a slash and is relative
to the current JSP page or file.

param action An action used to provide a name/value pair to a servlet. It is
used in conjunction with the jsp:include, jsp:forward, and jsp:param
actions.

http://www.sybex.com

486 Glossary

partial GET A type of GET method requesting that only part of the entity be
transferred.

path info The extra path information between the servlet path and the
query string.

path mapping A process used to locate a specified path. When the con-
tainer attempts to locate the most appropriate file associated with the request,
the stored string begins with a forward slash (/) and ends with a forward slash
and asterisk (/*). The longest match determines the servlet requested.

permanently unavailable Describes a servlet throwing an exception that
cannot recover from the error until some action is taken. Usually, the servlet
is corrupt in some way or not configured properly.

plugin action An action defined as jsp:plugin and displaying or playing
an applet or bean in the browser. The plug-in is either built into the browser
or downloaded from a specific URL.

POST method A request designed for posting information to the server.

prefix A predefined name that links the action to a tag library.

prefix mapping The process used to locate the tag library by using the tag
name and the associated library.

Presentation layer The layer of code developed for the front-end user.

principal The identifier used to map the person logging into the system.
A principal is usually recognized by their user ID.

private key A key that holds the individual’s authentication code and is
stored in a secure location, on a SmartCard or in a file.

programmatic security A type of security using code to determine
whether to grant access to a particular group or user.

public key An encryption scheme, either generated by software or issued
by a third party, used to encode or decode information. It is given to all
receivers to validate the authenticity of the user attempting to log in.

PUT method A method type that requests to store static information. A PUT
method asks the server to store the content body to the URI identified in the
request line.

http://www.sybex.com

Glossary 487

Q

query string A URL-encoded string that contains data stored in
name/value pairs.

R

redirect URL A converted URL in which all non-ASCII values must be
converted to their hexadecimal values; this includes ampersands and
equal signs.

request An object containing client intent and data.

request attributes Objects associated with the request.

request dispatching The forwarding of a request from one servlet to
another servlet for processing.

request object An implicit object that represents the HttpSerlvetRequest
object. The request object initiates the _jspService(…) method upon a
client’s call. When created, the request object generates header information,
such as cookies, the intent or type of request, such as a GET or POST, and pos-
sible parameters passed by the client.

request scope Indicates that an object is accessible from all pages pro-
cessing the same request.

RequestDispatcher A wrapper class that can be used to forward a request
to an error page.

response An object containing the information requested by the client.

response object An instance of the implementation-specific subclass
of the javax.servlet.ServletResponse interface, often known as
HttpServletResponse. Unlike servlets, it enables HTTP status codes and
headers in the JSP to be changed after output has been sent to the client.

role-based Describes a system in which users are assigned to roles, such as
Manager, Employee, or Guest. Each role is assigned certain privileges, and
access is granted to roles rather than users.

http://www.sybex.com

488 Glossary

S

scope The life span of a data element.

scriptlet A code fragment used within a JSP page.

sendError(…) A method that gives the developer an opportunity to set an
error status code for the response header and enables the servlet to replace
the response body with a server-specific page explaining the error.

servlet A platform-independent web component. Servlets are loaded
dynamically into a web server, from where they can process business logic
and generate a layout for the client on an as-needed basis.

servlet life cycle The various stages a servlet encounters during different
points of an application’s life. The cycle consists of a servlet being loaded and
instantiated. It then waits for requests for service. When the server deems
it appropriate, the servlet can be taken out of service.

Servlet model A model that provides small reusable server programs
the ability to process a variety of requests from a client and then return a
response efficiently.

servlet path The mapped directory name associated with the actual servlet.
Usually this consists of either the mapped servlet name or a mapped path to
the servlet, but nothing more.

ServletConfig The object created after a servlet is instantiated and its
default constructor is read. It is created to pass initialization information to
the servlet.

ServletException A javax.servlet.ServletException is thrown by
a servlet to indicate a general servlet problem has occurred.

session An object that provides servlets access to the multiple actions of
each user utilizing the site.

session attributes Temporary client information stored within an
HttpSession object.

session beans Provide business services to the client.

http://www.sybex.com

Glossary 489

session object An implicit object created when a client makes its first
request to an application. It is unique to a client and can exist longer than a
single request or even longer than the life of a client. It is an object used to
track client-specific data for the duration of the conversation or a specified
period of time.

session scope Indicates that objects are available for the life of the session.
Until the session is closed manually or automatically due to a method call
or a timeout, components can exist and share data.

setProperty action An action used to set the parameter values of the
bean in use.

SingleThreadModel An interface used as a flag to notify the container
how to handle the servlet life cycle. As per the API specifications, a servlet
that implements the SingleThreadModel is “guaranteed” to allow only one
thread access to the service() method at a time.

SIZE An attribute of the INPUT tag used to identify the initial width of
the control.

SRC An attribute of the INPUT tag used to specify the location of an image
control type.

stack trace The computer path taken to arrive at the current problem.

static error page Usually an HTML-formatted page that contains a
response to the occurring problem. Its information explains the problem, but
does not change it.

static include The process of including a file in your current JSP page.
The text of the included file is added to the JSP page.

suffix The name of the element used to invoke the action.

support classes Several API-provided classes that reduce the number of
methods a developer must implement to create a custom class.

synchronization A locking mechanism used to ensure that data cannot be
accessed by multiple requests.

synchronized Describes a method or code block that forces the requesting
thread to acquire the instance lock in order to gain access to the code block.

http://www.sybex.com

490 Glossary

T

tag extensions See “custom tags.”

tag library descriptor (TLD) An XML document that describes a tag
library. It contains one or many related custom tag extensions.

tag value Any java.lang.Object with an associated String key.

taglib directive Defines a tag library and prefix for the custom tags used
in the JSP page.

temporarily unavailable Indicates that a servlet cannot handle the
request for a period of time due to some system-wide problem. For example,
there might not be sufficient memory or disk storage to handle requests,
or a third-tier server might not be accessible. Some of these problems are
self-correcting, and others might require a system administrator to take cor-
rective action.

TLD resource path The context-relative path, which begins with a forward
slash (/) and does not include a protocol or host definition.

TRACE method Returns the entire network route that the request took,
from the client to the server and back.

traceroute A Unix command that identifies all the locations or IP addresses
that a request has utilized to get to its target address.

translation unit The combination of an attribute that applies to an entire
JSP page and any static include files.

TYPE An attribute for the INPUT tag used to specify the type of control to
create. Your choices are the following:

text|password|hidden|submit|reset|button|checkbox
radio|file|image

U

UnavailableException An exception thrown to indicate a servlet is either
temporarily or permanently unavailable.

http://www.sybex.com

Glossary 491

Uniform Resource Identifier (URI) The part of the URL excluding the
domain name and the query string.

Uniform Resource Locator (URL) Defines the information the client
needs to make a connection to the server.

updateable Describes a value object that has “set” or mutator methods or
public members.

Updateable (or Mutable) Value Object strategy A strategy you utilize
when you want the client to be able to change its value object instance.

URL rewriting A methodology that associates a session ID to all URL
addresses used throughout the session. Using the ID, a developer can map
client-related data to the session object for that client.

useBean action An action that incorporates a JavaBean within a JSP.

V

VALUE An attribute of the INPUT tag that specifies the initial value of the
control. It is not a required attribute for any control.

value object A single class with functionality to create, access, and pos-
sibly set field values.

Value Object Factory strategy A strategy that enables an entity to inherit
from more than one value object.

Value Objects pattern A pattern designed to reduce the number of method
calls a client must make to obtain information.

W

web application A single application that can consist of any or all of
the following elements: servlets, JSP pages, utility classes, static documents,
client-side Java applets, beans, and classes, and a standard configuration file.

web archive (WAR) file A compressed file containing all the necessary
classes and resources for a single web application.

http://www.sybex.com

492 Glossary

/WEB-INF/classes The directory containing all the server-side Java
classes, such as servlet and utility classes.

/WEB-INF/lib/*.jar The /lib directory containing all necessary com-
pressed Java files that are used for the web application. These files are
referred to as Java archive files or JAR files. They can consist of servlets,
JSPs, beans, and utility classes.

/WEB-INF/web.xml The file that contains the deployment descriptor.

web server An application that directs and manages web requests.

http://www.sybex.com

	Java 2: Web Developer Certification Study Guide
	Frontmatter
	Acknowledgments
	Introduction
	What is the Sun Certified Web Component Developer for J2EE Certification?
	Why Become a Sun Certified Programmer?
	How to Become a Sun Certified Programmer
	Who Should Buy This Book?
	How to Use This Book and the CD
	Exam Objectives
	Tips for Taking the Exam
	About the Authors
	Assessment Test
	Answers to Assessment Test

	Chapter 1: The Web Client Model
	Introduction to the J2EE Model
	HTML
	HTML Tags
	Query String
	URL
	URI

	HTTP
	The Client Request
	The Server Response
	Request Methods

	Summary
	Exam Essentials
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 2: The Servlet Model
	The Servlet Methods
	doXXX (...)
	doGet (...)
	doPost (...)
	doPut (...)
	doHead (...)
	doDelete (...)
	doOptions (...)
	doTrace (...)

	The Request
	ServletRequest and ServletResponse Interface
	HttpServletRequest and HTTPServletResponse Interfaces

	The Session
	The Servlet Life Cycle
	Loading and Instantiating
	Request Handling
	End of Service

	Summary
	Exam Essentials
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 3: Servlet Web Applications
	Understanding a Web Application
	Understanding a Directory Structure
	The Context
	Web Application Archive File (WAR File)
	Client-Viewed Files

	Using Deployment Descriptor Tags
	Basic Servlet Tags
	Initialization Parameters
	Mapping the URL to the Servlet
	Session Configuration
	MIME Type Mappings
	Welcome File List

	Summary
	Exam Essentials
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 4: The Servlet Container Model
	ServletContext
	ServletContext Methods and Attributes
	Listener Interfaces and Event Classes

	HttpSession
	HttpSessionListener
	HttpSessionAttributeListener
	HttpSessionActivationListener
	HttpSessionBindingListener

	Distributable Environment
	Deployment Descriptor
	Distributed Containers

	Filters
	The Life Cycle
	The Filter

	Summary
	Exam Essentials
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 5: Handling Exceptions
	Problem Notification
	sendError
	setStatus

	Error Pages
	Static Error Page
	Dynamic Error Page
	Passing the Error

	Logging Messages
	Reporting Messages

	Servlet Exceptions
	ServletException
	UnavailableException
	Exception Pages

	Summary
	Exam Essentials
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 6: Session Management
	Tracking Sessions
	Using Hidden Form Fields
	Rewriting the URL
	Using Cookies

	Using the HttpSession Object
	HttpSessionBindingListener
	HttpSessionListener

	Invalidating Sessions
	Summary
	Exam Essentials
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 7: Secure Web Applications
	Security Issues
	Authorization
	Authentication
	Data Integrity
	Auditing
	Malicious Code
	Website Attacks

	Authentication Types
	BASIC
	FORM
	DIGEST
	CLIENT-CERT

	Deployment Descriptor Tags
	Summary
	Exam Essentials
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 8: Thread-Safe Servlets
	Attributes
	Local Variables
	Instance Variables
	Class Variables
	Request Attributes
	Session Attributes
	Context Attributes

	Single-Threaded Servlets
	Single versus Multithreaded Servlets
	Summary
	Exam Essentials
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 9: Java Server Pages (JSPs)
	The JSP Model
	JSP Life Cycle

	JSP Elements
	Hidden Comment
	Declaration
	Expression
	Scriptlet
	Directive

	Implicit Objects
	Actions
	jps:include
	jsp:forward
	jsp:plugin
	jsp:param
	jsp:useBean

	Summary
	Exam Essentials
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 10: Using Custom Tags
	A Basic Custom Tag
	Defining a Tag
	Using the taglib Element

	Tag Handler
	Tag Interface
	IterationTag Interface
	BodyTag Interface
	Support Classes

	Summary
	Exam Essentials
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 11: Web Tier Design Patterns
	Server Tier Components
	Entity Beans
	Session Beans

	Value Object Pattern
	Updateable (or Mutable) Value Object
	Multiple Value Objects
	Entity Inherits Value Object
	Value Object Factory
	Advantages and Disadvantages

	Data Access Object Pattern
	Basic Database Access Object
	Automatic Code Generated Data Access Object
	Factory for Data Access Object
	Advantages and Disadvantages

	Business Delegate Pattern
	Delegate Proxy
	Delegate Adapter
	Advantages and Disadvantages

	Model View Controller Pattern
	JSP to Servlet
	Servlet to JSP
	Advantages and Disadvantages

	Summary
	Exam Essentials
	Key Terms
	Review Questions
	Answers to Review Questions

	Practice Exam
	Answers to Practice Exam

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	start:
	copyright: Copyright ©2002 SYBEX, Inc., Alameda, CA
	link:

